scholarly journals Recent Progress in the Development of Advanced Functionalized Electrodes for Oxygen Evolution Reaction: An Overview

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4420
Author(s):  
Tse-Wei Chen ◽  
Palraj Kalimuthu ◽  
Ganesan Anushya ◽  
Shen-Ming Chen ◽  
Vinitha Mariyappan ◽  
...  

Presently, the global energy demand for increasing clean and green energy consumption lies in the development of low-cost, sustainable, economically viable and eco-friendly natured electrochemical conversion process, which is a significant advancement in different morphological types of advanced electrocatalysts to promote their electrocatalytic properties. Herein, we overviewed the recent advancements in oxygen evolution reactions (OERs), including easy electrode fabrication and significant action in water-splitting devices. To date, various synthetic approaches and modern characterization techniques have effectively been anticipated for upgraded OER activity. Moreover, the discussed electrode catalysts have emerged as the most hopeful constituents and received massive appreciation in OER with low overpotential and long-term cyclic stability. This review article broadly confers the recent progress research in OER, the general mechanistic approaches, challenges to enhance the catalytic performances and future directions for the scientific community.

2012 ◽  
Vol 77 ◽  
pp. 65-70 ◽  
Author(s):  
Giusy Matzeu ◽  
Claudio Zuliani ◽  
Dermot Diamond

Solid-contact Ion Selective Electrodes (SC-ISEs) for the detection of lead are prepared on screen printed substrates in order to have low-cost and disposable sensors which may be useful in long-term environmental monitoring. It is shown that the materials used as solid contact layer, the deposition techniques and their thickness affect greatly the performances of the sensors. Poly(3-octylthiophene-2,5-diyl) (POT) and poly-3,4-ethylenedioxithiophene (PEDOT) are employed in this investigation. A trend showing an optimum is found for sensors prepared with POT as the batch reproducibility depends on the amount drop-cast, i.e., thickness. In case of PEDOT which is grown amperometrically the trend is more complex but an optimum for the batch reproducibility is again found depending on the current density. In the latter case, the film thickness and the overoxidation degree of the polymer probably concur in determining a more complex relationship.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Farihahusnah Hussin ◽  
Mohamed Kheireddine Aroua

AbstractSince the onset of the industrial revolution, fossil fuels have been the primary source of energy generation, and the continued exploitation of fossil fuels has led to an increase in the amount of atmospheric carbon dioxide. A lot of research currently focuses much on decreasing dependence on fossil fuels by replacing them with green energy. However, this technique poses a number of challenges, such as the need for improved infrastructure and technology and the high market penetration of renewable energy technologies. Capturing and converting carbon dioxide using electrochemical approaches can help to stabilize atmospheric greenhouse gas levels and create a positive future for the transformation of carbon dioxide into a number of value-added products. The conversion of carbon dioxide via electrochemical approach is a major challenge, and consideration must be given to the development and production of low-cost, stable, and highly efficient electrocatalysts. Hence, this review presents an overview of the current developments in the electrochemical conversion of carbon dioxide. In addition, this study discusses the current progress of electrocatalysts, in particular, the homogeneous and heterogeneous catalyst, which has a high level of activity and selectivity of low overpotential preferred products. The overview of the mechanisms and kinetics of the carbon dioxide reduction using the computational method are also addressed.


2020 ◽  
Vol 11 ◽  
pp. 51-60 ◽  
Author(s):  
Xianfeng Dai ◽  
Ke Xu ◽  
Fanan Wei

Perovskite solar cells (PSCs) are set to be game changing components in next-generation photovoltaic technology due to their high efficiency and low cost. In this article, recent progress in the development of perovskite layers, which are the basis of PSCs, is reviewed. Achievements in the fabrication of high-quality perovskite films by various methods and techniques are introduced. The reported works demonstrate that the power conversion efficiency of the perovskite layers depends largely on their morphology and the crystalline quality. Furthermore, recent achievements concerning the scalability of perovskite films are presented. These developments aim at manufacturing large-scale perovskite solar modules at high speed. Moreover, it is shown that the development of low-dimensional perovskites plays an important role in improving the long-term ambient stability of PSCs. Finally, these latest advancements can enhance the competitiveness of PSCs in photovoltaics, paving the way for their commercialization. In the closing section of this review, some future critical challenges are outlined, and the prospect of commercialization of PSCs is presented.


2020 ◽  
Author(s):  
Lalita Sharma ◽  
Nirmal Kumar ◽  
Rakesh Das ◽  
Khushu Tiwari ◽  
Chandra Sekhar Tiwary ◽  
...  

<p>Oxygen evolution reaction (OER) is the key step involved both in water splitting devices as well as in rechargeable metal-air batteries and there is an urgent requirement for a highly stable and low-cost material for efficient OER. In this article, for the first time, electrocatalyst based on high entropy alloy (HEA) of FeCoNiZnGa has been reported for OER. Nano-crystalline high entropy alloys materials withdrew the attention of the research academia due to their emerging unique properties due to the cocktail effect and synergetic effect between the constituent elements. The existing materials (IrO<sub>2</sub>, RuO<sub>2</sub>, etc.) being utilized in the OER reaction contain precious metals. Thus, high entropy alloy made up of low-cost elements has been formulated and tested for the OER, which is found to be highly stable and more efficient. The formulation of nanocrystalline HEA (FeCoNiZnGa) utilized a unique recipe casting-cum-comminution (CCC). After electrochemical CV activation, transition metal oxides formation at the HEA surface helps in OER activities. HEA exhibits a low overpotential of 370 mV to achieve a current density of 10 mA cm<sup>-2</sup> with a very small Tafel slope of 71 mV dec<sup>-1</sup> and exceptional long term stability of electrolysis for over 10 h in 1 M KOH alkaline solution, which is extremely stable in comparison to the state-of-the-art OER electrocatalyst RuO<sub>2</sub>. Transmission electron microscopic (TEM) studies after 10 h of long term chronoamperometry testing confirmed high stability of HEA as no change in the crystal structure observed. Our work highlights the great potential of HEA towards oxygen evolution reaction which is primary reaction involved in water splitting.</p>


2021 ◽  
pp. 408-413
Author(s):  
Shahid Siddique ◽  
Sebastian Eves-van den Akker

Abstract Plant parasitic nematodes are among the most destructive plant pathogens, causing an estimated US$78 billion yield losses globally. Although approximately 3000 species of plant parasitic nematodes have been described, most of the damage is caused by a small group of root-infecting sedentary endoparasitic nematodes that include root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera spp.). Given that previous literature amply reviews the breadth of biotechnological methods for the control of plant parasitic nematodes, this chapter will briefly touch on long-standing biotechnological methods but focus on recent progress in, and long-term promise of, the use of CRISPR technology for introducing targeted modifications into host genomes with the goal of enhancing resistance against plant parasitic nematodes. It is predicted that expanding reverse genetic approaches beyond RNA interference, using low-cost, technically simple and efficient transformation (transient or stable) will be the single most important advance in the field in some years.


Author(s):  
Ashish Gaur ◽  
Parrydeep K. Sachdeva ◽  
Rajinder Kumar ◽  
Takahiro Maruyama ◽  
Chandan Bera ◽  
...  

The possibilities to resolve the exponential increase in energy demand using water splitting have also triggered huge worldwide attention towards the oxygen evolution reaction using an efficient, earth-abundant and low-cost electrocatalyst.


2021 ◽  
Vol 9 (4) ◽  
pp. 771 ◽  
Author(s):  
Mark R. Alderson ◽  
Jo Anne Welsch ◽  
Katie Regan ◽  
Lauren Newhouse ◽  
Niranjan Bhat ◽  
...  

Despite advances in the development and introduction of vaccines against the major bacterial causes of meningitis, the disease and its long-term after-effects remain a problem globally. The Global Roadmap to Defeat Meningitis by 2030 aims to accelerate progress through visionary and strategic goals that place a major emphasis on preventing meningitis via vaccination. Global vaccination against Haemophilus influenzae type B (Hib) is the most advanced, such that successful and low-cost combination vaccines incorporating Hib are broadly available. More affordable pneumococcal conjugate vaccines are becoming increasingly available, although countries ineligible for donor support still face access challenges and global serotype coverage is incomplete with existing licensed vaccines. Meningococcal disease control in Africa has progressed with the successful deployment of a low-cost serogroup A conjugate vaccine, but other serogroups still cause outbreaks in regions of the world where broadly protective and affordable vaccines have not been introduced into routine immunization programs. Progress has lagged for prevention of neonatal meningitis and although maternal vaccination against the leading cause, group B streptococcus (GBS), has progressed into clinical trials, no GBS vaccine has thus far reached Phase 3 evaluation. This article examines current and future efforts to control meningitis through vaccination.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1531
Author(s):  
Biswajit Panda ◽  
Gianluigi Albano

Transition metal-catalyzed carbonylation reactions have emerged as one of the most relevant synthetic approaches for the preparation of carbonyl-containing molecules. The most commonly used protocol for the insertion of a carbonyl moiety is the use of carbon monoxide (CO) but, due to its toxic and explosive nature, this process is not suitable at an industrial scale. More recently, the chemistry of CO surrogates has received large attention as a way to use less expensive and more environmentally friendly methods. Among the various CO surrogates, N,N-dimethylformamide (DMF) has been paid greater attention due to its low cost and easy availability. This mini-review gives appealing insights into the application of DMF as a CO surrogate in metal-catalyzed carbonylations; in particular, in the first part we will give a general state of the art of these reactions for the preparation of carbonyl-containing molecules; then, we will take into account all the various synthetic approaches for the metal-catalyzed carbonylative synthesis of heterocycles using DMF as a CO surrogate. Each protocol has been discussed critically in order to screen the best synthetic method and to offer perspective on trends and future directions in this field.


2020 ◽  
Author(s):  
Lalita Sharma ◽  
Nirmal Kumar ◽  
Rakesh Das ◽  
Khushu Tiwari ◽  
Chandra Sekhar Tiwary ◽  
...  

<p>Oxygen evolution reaction (OER) is the key step involved both in water splitting devices as well as in rechargeable metal-air batteries and there is an urgent requirement for a highly stable and low-cost material for efficient OER. In this article, for the first time, electrocatalyst based on high entropy alloy (HEA) of FeCoNiZnGa has been reported for OER. Nano-crystalline high entropy alloys materials withdrew the attention of the research academia due to their emerging unique properties due to the cocktail effect and synergetic effect between the constituent elements. The existing materials (IrO<sub>2</sub>, RuO<sub>2</sub>, etc.) being utilized in the OER reaction contain precious metals. Thus, high entropy alloy made up of low-cost elements has been formulated and tested for the OER, which is found to be highly stable and more efficient. The formulation of nanocrystalline HEA (FeCoNiZnGa) utilized a unique recipe casting-cum-comminution (CCC). After electrochemical CV activation, transition metal oxides formation at the HEA surface helps in OER activities. HEA exhibits a low overpotential of 370 mV to achieve a current density of 10 mA cm<sup>-2</sup> with a very small Tafel slope of 71 mV dec<sup>-1</sup> and exceptional long term stability of electrolysis for over 10 h in 1 M KOH alkaline solution, which is extremely stable in comparison to the state-of-the-art OER electrocatalyst RuO<sub>2</sub>. Transmission electron microscopic (TEM) studies after 10 h of long term chronoamperometry testing confirmed high stability of HEA as no change in the crystal structure observed. Our work highlights the great potential of HEA towards oxygen evolution reaction which is primary reaction involved in water splitting.</p>


2019 ◽  
Vol 9 (20) ◽  
pp. 5651-5659 ◽  
Author(s):  
Hossain M. Shahadat ◽  
Hussein A. Younus ◽  
Nazir Ahmad ◽  
Md. Abdur Rahaman ◽  
Zafar A. K. Khattak ◽  
...  

Electrochemical water oxidation catalyzed by a homogeneous Ni–NHC/pyridine complex demonstrated electrolyte-dependent catalytic performances. The catalyst displayed a stable catalytic current of oxygen evolution in long-term bulk electrolysis.


Sign in / Sign up

Export Citation Format

Share Document