The Effect of Sodium Acetate Ingestion on the Metabolic Response to Prolonged Moderate-Intensity Exercise in Humans

2013 ◽  
Vol 23 (4) ◽  
pp. 357-368 ◽  
Author(s):  
Gordon I. Smith ◽  
Asker E. Jeukendrup ◽  
Derek Ball

At rest, administration of the short-chain fatty acid acetate suppresses fat oxidation without affecting carbohydrate utilization. The combined effect of increased acetate availability and exercise on substrate utilization is, however, unclear. With local ethics approval, we studied the effect of ingesting either sodium acetate (NaAc) or sodium bicarbonate (NaHCO3) at a dose of 4 mmol·kg-1 body mass 90 min before completing 120 min of exercise at 50% VO2peak. Six healthy young men completed the trials after an overnight fast and ingested the sodium salts in randomized order. As expected NaAc ingestion decreased resting fat oxidation (mean ± SD; 0.09 ± 0.02 vs. 0.07 ± 0.02 g·min-1 pre- and post-ingestion respectively, p < .05) with no effect upon carbohydrate utilization. In contrast, NaHCO3 ingestion had no effect on substrate utilization at rest. In response to exercise, fat and CHO oxidation increased in both trials, but fat oxidation was lower (0.16 ± 0.10 vs. 0.29 ± 0.11 g·min-1, p < .05) and carbohydrate oxidation higher (1.67 ± 0.35 vs. 1.44 ± 0.22 g·min-1, p < .05) in the NaAc trial compared with the NaHCO3 trial during the first 15 min of exercise. Over the final 75 min of exercise an increase in fat oxidation and decrease in carbohydrate oxidation was observed only in the NaAc trial. These results demonstrate that increasing plasma acetate concentration suppresses fat oxidation both at rest and at the onset of moderate-intensity exercise.

Aging Cell ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Carolyn Chee ◽  
Chris E. Shannon ◽  
Aisling Burns ◽  
Anna L. Selby ◽  
Daniel Wilkinson ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. E983-E989 ◽  
Author(s):  
S. Sial ◽  
A. R. Coggan ◽  
R. Carroll ◽  
J. Goodwin ◽  
S. Klein

We evaluated the effect of aging on fat and carbohydrate metabolism during moderate intensity exercise. Glycerol, free fatty acid (FFA), and glucose rate of appearance (Ra) in plasma and substrate oxidation were determined during 60 min of cycle ergometer exercise in six elderly (73 +/- 2 yr) and six young adults (26 +/- 2 yr) matched by gender and lean body mass. The elderly group was studied during exercise performed at 56 +/- 3% of maximum oxygen uptake, whereas the young adults were studied during exercise performed at the same absolute and at a similar relative intensity as the elderly subjects. Mean fat oxidation during exercise was 25-35% lower in the elderly subjects than in the young adults exercising at either the same absolute or similar relative intensities (P < 0.05). Mean carbohydrate oxidation in the elderly group was 35% higher than the young adults exercising at the same absolute intensity (P < 0.001) but 40% lower than the young adults exercising at the same relative intensity (P < 0.001). Average FFA Ra in the elderly subjects was 85% higher than in the young adults exercising at the same absolute intensity (P < 0.05) but 35% lower than the young adults exercising at a similar relative intensity (P < 0.05). We conclude that fat oxidation is decreased while carbohydrate oxidation is increased during moderate intensity exercise in elderly men and women. The shift in substrate oxidation was caused by age-related changes in skeletal muscle respiratory capacity because lipolytic rates and FFA availability were not rate limiting in the older subjects.


1999 ◽  
Vol 276 (5) ◽  
pp. E828-E835 ◽  
Author(s):  
Jeffrey F. Horowitz ◽  
Ricardo Mora-Rodriguez ◽  
Lauri O. Byerley ◽  
Edward F. Coyle

This study determined the effect of carbohydrate ingestion during exercise on the lipolytic rate, glucose disappearance from plasma (Rd Glc), and fat oxidation. Six moderately trained men cycled for 2 h on four separate occasions. During two trials, they were fed a high-glycemic carbohydrate meal during exercise at 30 min (0.8 g/kg), 60 min (0.4 g/kg), and 90 min (0.4 g/kg); once during low-intensity exercise [25% peak oxygen consumption (V˙o 2 peak)] and once during moderate-intensity exercise (68%V˙o 2 peak). During two additional trials, the subjects remained fasted (12–14 h) throughout exercise at each intensity. After 55 min of low-intensity exercise in fed subjects, hyperglycemia (30% increase) and a threefold elevation in plasma insulin concentration ( P < 0.05) were associated with a 22% suppression of lipolysis compared with when subjects were fasted (5.2 ± 0.5 vs. 6.7 ± 1.2 μmol ⋅ kg−1 ⋅ min−1, P < 0.05), but fat oxidation was not different from fasted levels at this time. Fat oxidation when subjects were fed carbohydrate was not reduced below fasting levels until 80–90 min of exercise, and lipolysis was in excess of fat oxidation at this time. The reduction in fat oxidation corresponded in time with the increase in Rd Glc. During moderate-intensity exercise, the very small elevation in plasma insulin concentration (∼3 μU/ml; P < 0.05) during the second hour of exercise when subjects were fed vs. when they were fasted slightly attenuated lipolysis ( P < 0.05) but did not increase Rd Glc or suppress fat oxidation. These findings indicate that despite a suppression of lipolysis after carbohydrate ingestion during exercise, the lipolytic rate remained in excess and thus did not limit fat oxidation. Under these conditions, a reduction in fat oxidation was associated in time with an increase in glucose uptake.


1998 ◽  
Vol 275 (4) ◽  
pp. E655-E664 ◽  
Author(s):  
Amy E. Halseth ◽  
Nathalie Rhéaume ◽  
Allison B. Messina ◽  
Erica K. Reed ◽  
Mahesh G. Krishna ◽  
...  

The goal of this study was to determine how liver glutamine (Gln) metabolism adapts to acute exercise in the 18-h-fasted dogs ( n = 7) and in dogs that were glycogen depleted by a 42-h fast ( n = 8). For this purpose, sampling (carotid artery, portal vein, and hepatic vein) and infusion (vena cava) catheters and Doppler flow probes (portal vein, hepatic artery) were implanted under general anesthesia. At least 16 days later an experiment, consisting of a 120-min equilibration period, a 30-min basal sampling period, and a 150-min exercise period was performed. At the start of the equilibration period, a constant-rate infusion of [5-15N]Gln was initiated. Arterial Gln flux was determined by isotope dilution. Gut and liver Gln release into and uptake from the blood were calculated by combining stable isotopic and arteriovenous difference methods. The results of this study show that 1) in the 18-h-fasted dog, ∼10% and ∼35% of the basal Gln appearance in arterial blood is due to Gln release from the gut and liver, respectively, whereas ∼30% and ∼25% of the basal Gln disappearance is due to removal by these tissues; 2) extending the fast to 42 h does not affect basal arterial Gln flux or the contribution of the gut to arterial Gln fluxes but decreases hepatic Gln release, causing a greater retention of gluconeogenic carbon by the liver; 3) moderate-intensity exercise increases hepatic Gln removal from the blood regardless of fast duration but does not affect the hepatic release of Gln; and 4) Gln plays an important role in channeling nitrogen into the ureagenic pathway in the basal state, and this role is increased by ∼80% in response to exercise. These studies illustrate the quantitative importance of the splanchnic bed contribution to arterial Gln flux during exercise and the ability of the liver to acutely adapt to changes in metabolic requirements induced by the combined effects of fasting and exercise.


2011 ◽  
Vol 18 (6) ◽  
pp. 824-830 ◽  
Author(s):  
Emmanuel G Ciolac ◽  
Edimar A Bocchi ◽  
Julia MD Greve ◽  
Guilherme V Guimarães

Exercise training is an effective intervention for treating and preventing hypertension, but its effects on heart rate (HR) response to exercise and cardiorespiratory fitness (CRF) of non-hypertensive offspring of hypertensive parents (FH+) has not been studied. We compared the effects of three times per week equal-volume high-intensity aerobic interval (AIT) and continuous moderate-intensity exercise (CME) on HR response to exercise and CRF of FH+. Forty-four young FH+ women (25.0 ± 4.4 years) randomized to control (CON; n = 12), AIT (80–90% of VO2MAX; n = 16), or CME (50–60% of VO2MAX; n = 16) performed a graded exercise test (GXT) before and after 16 weeks of follow-up to evaluate HR response to exercise and several parameters of CRF. Resting, maximal, and reserve HR did not change after the follow-up in all groups. HR recovery (difference between HRMAX and HR at 1 minute of GXT recovery phase) improved only after AIT (11.8 ± 4.9 vs. 20.6 ± 5.8 bpm, p < 0.01). Both exercise programmes were effective for improving CRF parameters, but AIT was more effective than CME for improving oxygen consumption at the respiratory compensation point (VO2RCP; 22.1% vs. 8.8%, p = 0.008) and maximal effort (VO2MAX; 15.8% vs. 8.0%, p = 0.036), as well as tolerance time (TT) to reach anaerobic threshold (TTAT; 62.0 vs. 37.7, p = 0.048), TTRCP (49.3 vs. 32.9, p = 0.032), and TTMAX (38.9 vs. 29.2, p = 0.042). Exercise intensity was an important factor in improving HR recovery and CRF of FH+women. These findings may have important implications for designing exercise-training programmes for the prevention of an inherited hypertensive disorder.


2010 ◽  
Vol 103 (10) ◽  
pp. 1480-1484 ◽  
Author(s):  
Narelle M. Berry ◽  
Kade Davison ◽  
Alison M. Coates ◽  
Jonathan D. Buckley ◽  
Peter R. C. Howe

Impaired endothelial vasodilatation may contribute to the exaggerated blood pressure (BP) responses to exercise in individuals who are overweight/obese. The present study investigated whether consumption of cocoa flavanols, which improve endothelium-dependent flow-mediated dilatation (FMD), can modify BP responsiveness to exercise. Twenty-one volunteers (eight females and thirteen males, 54·9 (se2·2) years, BMI 31·6 (se0·8) kg/m2, systolic BP 134 (se2) mmHg, diastolic BP (DBP) 87 (se2) mmHg) were randomised to consume single servings of either a high-flavanol (HF, 701 mg) or a low-flavanol (LF, 22 mg) cocoa beverage in a double-blind, cross-over design with 3–7-d washout between treatments. Two hours after cocoa consumption, FMD was measured, followed by continuous beat-to-beat assessment (Finapres™) of BP before and during 10 min of cycling at 75 % of age-predicted maximum heart rate. Averaged data from two assessments on each type of beverage were compared by analysis of covariance using pre-exercise BP as the covariate. Pre-exercise BP was similar after taking LF and HF (153 (se3)/88 (se3)v. 153 (se4)/87 (se2) mmHg, respectively,P>0·05). However, the BP response to exercise (area under BP curve) was attenuated by HF compared with LF. BP increases were 68 % lower for DBP (P = 0·03) and 14 % lower for mean BP (P = 0·05). FMD measurements were higher after taking HF than after taking LF (6·1 (se0·6) %v. 3·4 (se0·5) %,P < 0·001). By facilitating vasodilation and attenuating exercise-induced increases in BP, cocoa flavanols may decrease cardiovascular risk and enhance the cardiovascular benefits of moderate intensity exercise in at-risk individuals.


2020 ◽  
Vol 52 (7S) ◽  
pp. 1083-1083
Author(s):  
Jessie Armendariz ◽  
Boe Burrus ◽  
Kari Pilolla ◽  
David Baston ◽  
Taylor Bloedon

2001 ◽  
Vol 91 (5) ◽  
pp. 2143-2149 ◽  
Author(s):  
Robert S. Mazzeo ◽  
Danielle Donovan ◽  
Monika Fleshner ◽  
Gail E. Butterfield ◽  
Stacy Zamudio ◽  
...  

Interleukin-6 (IL-6), an important cytokine involved in a number of biological processes, is consistently elevated during periods of stress. The mechanisms responsible for the induction of IL-6 under these conditions remain uncertain. This study examined the effect of α-adrenergic blockade on the IL-6 response to acute and chronic high-altitude exposure in women both at rest and during exercise. Sixteen healthy, eumenorrheic women (aged 23.2 ± 1.4 yr) participated in the study. Subjects received either α-adrenergic blockade (prazosin, 3 mg/day) or a placebo in a double-blinded, randomized fashion. Subjects participated in submaximal exercise tests at sea level and on days 1 and 12 at altitude (4,300 m). Resting plasma and 24-h urine samples were collected throughout the duration of the study. At sea level, no differences were found at rest for plasma IL-6 between groups (1.5 ± 0.2 and 1.2 ± 0.3 pg/ml for placebo and blocked groups, respectively). On acute ascent to altitude, IL-6 levels increased significantly in both groups compared with sea-level values (57 and 84% for placebo and blocked groups, respectively). After 12 days of acclimatization, IL-6 levels remained elevated for placebo subjects; however, they returned to sea-level values in the blocked group. α-Adrenergic blockade significantly lowered the IL-6 response to exercise both at sea level (46%) and at altitude (42%) compared with placebo. A significant correlation ( P = 0.004) between resting IL-6 and urinary norepinephrine excretion rates was found over the course of time while at altitude. In conclusion, the results indicate a role for α-adrenergic regulation of the IL-6 response to the stress of both short-term moderate-intensity exercise and hypoxia.


1998 ◽  
Vol 274 (5) ◽  
pp. E785-E790 ◽  
Author(s):  
Shahid Sial ◽  
Andrew R. Coggan ◽  
Robert C. Hickner ◽  
Samuel Klein

Compared with young adults, fat oxidation is lower in elderly persons during endurance exercise performed at either the same absolute or relative intensity. We evaluated the effect of 16 wk of endurance training on fat and glucose metabolism during 60 min of moderate intensity exercise [50% of pretraining peak oxygen consumption (V˙o2 peak)] in six elderly men and women (74 ± 2 yr). Training caused a 21% increase in meanV˙o2 peak. The average rate of fat oxidation during exercise was greater after (221 ± 28 μmol/min) than before (166 ± 17 μmol/min) training ( P = 0.002), and the average rate of carbohydrate oxidation during exercise was lower after (3,180 ± 461 μmol/min) than before (3,937 ± 483 μmol/min) training ( P = 0.003). Training did not cause a significant change in glycerol rate of appearance (Ra), free fatty acid (FFA) Ra, and FFA rate of disappearance during exercise. However, glucose Raduring exercise was lower after (1,027 ± 95 μmol/min) than before (1,157 ± 69 μmol/min) training ( P = 0.01). These results demonstrate that a 16-wk period of endurance training increases fat oxidation without a significant change in lipolysis (glycerol Ra) or FFA availability (FFA Ra) during exercise in elderly subjects. Therefore, the training-induced increase in fat oxidation during exercise is likely related to alterations in skeletal muscle fatty acid metabolism.


Sign in / Sign up

Export Citation Format

Share Document