Power Output During a Professional Men’s Road-Cycling Tour

2006 ◽  
Vol 1 (4) ◽  
pp. 324-335 ◽  
Author(s):  
Tammie R. Ebert ◽  
David T. Martin ◽  
Brian Stephens ◽  
Robert T. Withers

Purpose:To quantify the power-output demands of men’s road-cycling stage racing using a direct measure of power output.Methods:Power-output data were collected from 207 races over 6 competition years on 31 Australian national male road cyclists. Subjects performed a maximal graded exercise test in the laboratory to determine maximum aerobic-power output, and bicycles were fitted with SRM power meters. Races were described as fl at, hilly, or criterium, and linear mixed modeling was used to compare the races.Results:Criterium was the shortest race and displayed the highest mean power output (criterium 262 ± 30 v hilly 203 ± 32 v fl at 188 ± 30 W), percentage total race time above 7.5 W/kg (crite-rium 15.5% ± 4.1% v hilly 3.8% ± 1.7% v fl at 3.5% ± 1.4%) and SD in power output (criterium 250 v hilly 165 v fl at 169 W). Approximately 67%, 80%, and 85% of total race time was spent below 5 W/kg for criterium, hilly and fl at races, respectively. About 70, 40, and 20 sprints above maximum aerobic-power output occurred during criterium, hilly, and fl at races, respectively, with most sprints being 6 to 10 s.Conclusions:These data extend previous research documenting the demands of men’s road cycling. Despite the relatively low mean power output, races were characterized by multiple high-intensity surges above maximum aerobic-power output. These data can be used to develop sport-specific interval-training programs that replicate the demands of competition.

2014 ◽  
Vol 9 (4) ◽  
pp. 732-734 ◽  
Author(s):  
Naroa Etxebarria ◽  
Shaun D’Auria ◽  
Judith M. Anson ◽  
David B. Pyne ◽  
Richard A. Ferguson

Purpose:The patterns of power output in the ~1-h cycle section of Olympic-distance triathlon races are not well documented. Here the authors establish a typical cycling-race profile derived from several International Triathlon Union elite-level draftinglegal triathlon races.Methods:The authors collated 12 different race power profiles from elite male triathletes (N = 5, age 25 ± 5 y, body mass 65.5 ± 5.6 kg; mean ± SD) during 7 international races. Power output was recorded using SRM cranks and analyzed with proprietary software.Results:The mean power output was 252 ± 33 W, or 3.9 ± 0.5 W/kg in relative terms, with a coefficient of variation of 71% ± 13%. Normalized power (power output an athlete could sustain if intensity were maintained constant without any variability) for the entire cycle section was 291 ± 29 W, or 40 ± 13 W higher than the actual mean power output. There were 34 ± 14 peaks of power output above 600 W and ~18% time spent at >100% of maximal aerobic power.Conclusion:Cycling during Olympic-distance triathlon, characterized by frequent and large power variations including repeat supramaximal efforts, equates to a higher workload than cycling at constant power.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3674
Author(s):  
Tak Hiong Wong ◽  
Alexiaa Sim ◽  
Stephen F. Burns

Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot—a common source of nitrate—to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges’ g = −0.05, 95% CI −0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges’ g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicki Winfield Almquist ◽  
Øyvind Sandbakk ◽  
Bent R. Rønnestad ◽  
Dionne Noordhof

Although the ability to sprint repeatedly is crucial in road cycling races, the changes in aerobic and anaerobic power when sprinting during prolonged cycling has not been investigated in competitive elite cyclists. Here, we used the gross efficiency (GE)-method to investigate: (1) the absolute and relative aerobic and anaerobic contributions during 3 × 30-s sprints included each hour during a 3-h low-intensity training (LIT)-session by 12 cyclists, and (2) how the energetic contribution during 4 × 30-s sprints is affected by a 14-d high-volume training camp with (SPR, n = 9) or without (CON, n = 9) inclusion of sprints in LIT-sessions. The aerobic power was calculated based on GE determined before, after sprints, or the average of the two, while the anaerobic power was calculated by subtracting the aerobic power from the total power output. When repeating 30-s sprints, the mean power output decreased with each sprint (p < 0.001, ES:0.6–1.1), with the majority being attributed to a decrease in mean anaerobic power (first vs. second sprint: −36 ± 15 W, p < 0.001, ES:0.7, first vs. third sprint: −58 ± 16 W, p < 0.001, ES:1.0). Aerobic power only decreased during the third sprint (first vs. third sprint: −17 ± 5 W, p < 0.001, ES:0.7, second vs. third sprint: 16 ± 5 W, p < 0.001, ES:0.8). Mean power output was largely maintained between sets (first set: 786 ± 30 W vs. second set: 783 ± 30 W, p = 0.917, ES:0.1, vs. third set: 771 ± 30 W, p = 0.070, ES:0.3). After a 14-d high-volume training camp, mean power output during the 4 × 30-s sprints increased on average 25 ± 14 W in SPR (p < 0.001, ES:0.2), which was 29 ± 20 W more than CON (p = 0.008, ES: 0.3). In SPR, mean anaerobic power and mean aerobic power increased by 15 ± 13 W (p = 0.026, ES:0.2) and by 9 ± 6 W (p = 0.004, ES:0.2), respectively, while both were unaltered in CON. In conclusion, moderate decreases in power within sets of repeated 30-s sprints are primarily due to a decrease in anaerobic power and to a lesser extent in aerobic power. However, the repeated sprint-ability (multiple sets) and corresponding energetic contribution are maintained during prolonged cycling in elite cyclists. Including a small number of sprints in LIT-sessions during a 14-d training camp improves sprint-ability mainly through improved anaerobic power.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


Author(s):  
Christopher J. Alfiero ◽  
Samantha J. Brooks ◽  
Hannah M. Bideganeta ◽  
Coby Contreras ◽  
Ann F. Brown

The effects of a 6-week cycling high-intensity interval training (HIIT) concurrently with protein supplementation on aerobic and anaerobic fitness and body composition in collegiate dancers was investigated. Eighteen participants enrolled in a collegiate dance program were matched into three groups: high-protein (HP; 90 g·d-1), moderate-protein (MP; 40 g·d-1), and control (C; 0 g·d-1). All participants performed a 6-week HIIT intervention. Participants completed a graded exercise test, Wingate anaerobic test (Wingate), and dual energy x-ray absorptiometry scan before and after the intervention. Peak heart rate (HRpeak), peak oxygen uptake (VOpeak), peak power output (PPO), lactate threshold (LT), and ventilatory thresholds 1 (VT1) and 2 (VT2) were assessed during the graded exercise test. Peak power output, mean power output (MPO), and fatigue index (FI) were assessed during the Wingate. Lean mass (LM), fat mass (FM), visceral adipose tissue, appendicular skeletal muscle mass, and appendicular skeletal muscle mass index were assessed during dual energy x-ray absorptiometry. Body composition index (BCI) was calculated from pre and post LM and FM. Habitual diet was recorded weekly. Significance was set at p ≤ 0.05. No significant differences in VO2peak and percent fat mass (%FM) were observed between groups prior to the intervention. Significant main effects for time were observed for HRpeak (p = 0.02), VO2peak (p < 0.001), PPO (p < 0.01), LT (p < 0.001), VT1 (p < 0.001), and VT2 (p < 0.001) during the graded exercise test, and PPO (p < 0.01) and FI (p < 0.01) during the Wingate. Significant main effects for time were observed for LM (kg; p = 0.01) and FM (kg; p < 0.01). Body composition index was improved for all groups, however, no significant differences by group were observed. No significant differences were observed between groups for the measured outcomes (p > 0.05). Therefore, there was no effect of protein supplementation in the short 6-week intervention. This cycling based HIIT routine increased physical fitness, optimized aesthetics, and was a simple addition to an existing collegiate dance curriculum.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 82
Author(s):  
Andrew W. Subudhi ◽  
J Tod Olin ◽  
Andrew C. Dimmen ◽  
Bengt Kayser ◽  
Robert C. Roach

Sign in / Sign up

Export Citation Format

Share Document