Recovery of Cycling Gross Efficiency After Time-Trial Exercise

2018 ◽  
Vol 13 (8) ◽  
pp. 1028-1033 ◽  
Author(s):  
Sjors Groot ◽  
Lars H.J. van de Westelaken ◽  
Dionne A. Noordhof ◽  
Koen Levels ◽  
Jos J. de Koning

Background: Research has shown that gross efficiency (GE) declines during high-intensity exercise, but the time course of recovery of GE after high-intensity exercise has not yet been investigated. Purpose: To determine the time course of the recovery of GE after time trials (TTs) of different lengths. Methods: Nineteen trained male cyclists participated in this study. Before and after TTs of 2000 and 20,000 m, subjects performed submaximal exercise at 55% of the power output attained at maximal oxygen uptake (PVO2max). The postmeasurement continued until 30 min after the end of the TT, during which GE was determined over 3-min intervals. The magnitude-based-inferences approach was used for statistical analysis. Results: GE decreased substantially during the 2000-m and 20,000-m TTs (−11.8% [3.6%] and −6.2% [4.0%], respectively). A most likely and very likely recovery of GE was found during the first half of the submaximal exercise bout performed after the 2000-m, with only a possible increase in GE during the first part of the submaximal exercise bout performed after the 20,000-m. After both distances, GE did not fully recover to the initial pre-TT values, as the difference between the pre-TT value and average GE value of minutes 26–29 was still most likely negative for both the 2000- and 20,000-m (−6.1% [2.8%] and −7.0% [4.5%], respectively). Conclusions: It is impossible to fully recover GE after TTs of 2000- or 20,000-m during 30 min of submaximal cycling exercise performed at an intensity of 55% PVO2max.

2018 ◽  
Vol 43 (7) ◽  
pp. 691-696 ◽  
Author(s):  
Ana Luiza Matias Correia ◽  
Filipe Dinato de Lima ◽  
Martim Bottaro ◽  
Amilton Vieira ◽  
Andrew Correa da Fonseca ◽  
...  

The purpose of this study was to investigate the effects of a single-dose of β-hydroxy-β-methylbutyrate free acid (HMB-FA) supplementation on muscle recovery after a high-intensity exercise bout. Twenty-three trained young males were randomly assigned to receive either a single-dose supplementation of 3 g of HMB-FA (n = 12; age, 22.8 ± 3.0 years) or placebo (PLA; n = 11; age, 22.9 ± 3.1 years). A muscle damage protocol was applied 60 min after supplementation, and consisted of 7 sets of 20 drop jumps from a 60-cm box with 2-min rest intervals between sets. Muscle swelling, countermovement jump (CMJ), maximal voluntary isometric torque (MVIT), and work capacity (WC) were measured before, immediately after, and 24, 48, and 72 h after the exercise protocol. Muscle swelling, CMJ, and MVIT changed similarly in both groups after the exercise protocol (p < 0.001), but returned to pre-exercise levels after 24 h in both groups. WC decreased similarly in both groups after the exercise protocol (p < 0.01). For HMB-FA, WC returned to pre-exercise level 24 h after exercise protocol. However, for PLA, WC did not return to pre-exercise level even 72 h after the exercise protocol. In summary, a single-dose of HMB-FA supplementation improved WC recovery after a high-intensity exercise bout. However, HMB-FA did not affect the time-course of muscle swelling, MVIT, and CMJ recovery.


2020 ◽  
Vol 15 (1) ◽  
pp. 126-132
Author(s):  
Richard Ebreo ◽  
Louis Passfield ◽  
James Hopker

Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions.


2007 ◽  
Vol 102 (2) ◽  
pp. 616-621 ◽  
Author(s):  
David Bishop ◽  
Johann Edge ◽  
Claire Thomas ◽  
Jacques Mercier

The regulation of intracellular pH during intense muscle contractions occurs via a number of different transport systems [e.g., monocarboxylate transporters (MCTs)] and via intracellular buffering (βmin vitro). The aim of this study was to investigate the effects of an acute bout of high-intensity exercise on both MCT relative abundance and βmin vitro in humans. Six active women volunteered for this study. Biopsies of the vastus lateralis were obtained at rest and immediately after 45 s of exercise at 200% of maximum O2 uptake. βmin vitro was determined by titration, and MCT relative abundance was determined in membrane preparations by Western blots. High-intensity exercise was associated with a significant decrease in both MCT1 (−24%) and MCT4 (−26%) and a decrease in βmin vitro (−11%; 135 ± 3 to 120 ± 2 μmol H+·g dry muscle−1·pH−1; P < 0.05). These changes were consistently observed in all subjects, and there was a significant correlation between changes in MCT1 and MCT4 relative abundance ( R2 = 0.92; P < 0.05). In conclusion, a single bout of high-intensity exercise decreased both MCT relative abundance in membrane preparations and βmin vitro. Until the time course of these changes has been established, researchers should consider the possibility that observed training-induced changes in MCT and βmin vitro may be influenced by the acute effects of the last exercise bout, if the biopsy is taken soon after the completion of the training program. The implications that these findings have for lactate (and H+) transport following acute, exhaustive exercise warrant further investigation.


2020 ◽  
Vol 15 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Anna E. Voskamp ◽  
Senna van den Bos ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Dionne A. Noordhof

Background: Gross efficiency (GE) declines during high-intensity exercise. Increasing extracellular buffer capacity might diminish the decline in GE and thereby improve performance. Purpose: To examine if sodium bicarbonate (NaHCO3) supplementation diminishes the decline in GE during a 2000-m cycling time trial. Methods: Sixteen male cyclists and 16 female cyclists completed 4 testing sessions including a maximal incremental test, a familiarization trial, and two 2000-m GE tests. The 2000-m GE tests were performed after ingestion of either NaHCO3 supplements (0.3 g/kg body mass) or placebo supplements (amylum solani, magnesium stearate, and sunflower oil capsules). The GE tests were conducted using a double-blind, randomized, crossover design. Power output, gas exchange, and time to complete the 2000-m time trials were recorded. Capillary blood samples were analyzed for blood bicarbonate, pH, and lactate concentration. Data were analyzed using magnitude-based inference. Results: The decrement in GE found after the 2000-m time trial was possibly smaller in the male and female groups after NaHCO3 than with placebo ingestion, with the effect in both groups combined being unclear. The effect on performance was likely trivial for males (placebo 164.2 [5.0] s, NaHCO3 164.3 [5.0] s; Δ0.1; ±0.6%), unclear for females (placebo 178.6 [4.8] s, NaHCO3 178.0 [4.3] s; Δ−0.3; ±0.5%), and very likely trivial when effects were combined. Blood bicarbonate, pH, and lactate concentration were substantially elevated from rest to pretest after NaHCO3 ingestion. Conclusions: NaHCO3 supplementation results in an unclear effect on the decrease in GE during high-intensity exercise and in a very likely trivial effect on performance.


2014 ◽  
Vol 9 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Christina Åsan Grasaas ◽  
Gertjan Ettema ◽  
Ann Magdalen Hegge ◽  
Knut Skovereng ◽  
Øyvind Sandbakk

This study investigated changes in technique and efficiency after high-intensity exercise to exhaustion in elite cross-country skiers. Twelve elite male skiers completed 4 min submaximal exercise before and after a high-intensity incremental test to exhaustion with the G3 skating technique on a 5% inclined roller-ski treadmill. Kinematics and kinetics were monitored by instrumented roller skis, work rate was calculated as power against roller friction and gravity, aerobic metabolic cost was determined from gas exchange, and blood lactate values indicated the anaerobic contribution. Gross efficiency was the work rate divided by aerobic metabolic rate. A recovery period of 10 min between the incremental test and the posttest was included to allow the metabolic values to return to baseline. Changes in neuromuscular fatigue in upper and lower limbs before and after the incremental test were indicated by peak power in concentric bench press and squat-jump height. From pretest to posttest, cycle length decreased and cycle rate increased by approximately 5% (P < 0.001), whereas the amount of ski forces did not change significantly. Oxygen uptake increased by 4%, and gross efficiency decreased from 15.5% ± 0.7% to 15.2% ± 0.5% from pretest to posttest (both P < .02). Correspondingly, blood lactate concentration increased from 2.4 ± 1.0 to 6.2 ± 2.5 mmol/L (P < .001). Bench-press and squat-jump performance remained unaltered. Elite cross-country skiers demonstrated a less efficient technique and shorter cycle length during submaximal roller-ski skating after high-intensity exercise. However, there were no changes in ski forces or peak power in the upper and lower limbs that could explain these differences.


2013 ◽  
Vol 8 (6) ◽  
pp. 682-684 ◽  
Author(s):  
Jos J. de Koning ◽  
Dionne A. Noordhof ◽  
Tom P. Uitslag ◽  
Rianna E Galiart ◽  
Christopher Dodge ◽  
...  

Purpose:Gross efficiency (GE) is coupling power production to propulsion and is an important performance-determining factor in endurance sports. Measuring GE normally requires measuring VO2 during submaximal exercise. In this study a method is proposed to estimating GE during high-intensity exercise.Methods:Nineteen subjects completed a maximal incremental test and 2 GE tests (1 experimental and 1 control test). The GE test consisted of 10 min cycling at 50% peak power output (PPO), 2 min at 25 W, followed by 4 min 100% PPO, 1 min at 25 W, and another 10 min at 50% PPO. GE was determined for the 50%-PPO sections and was, for the second 50%-PPO section, back-extrapolated, using linear regression, to the end of the 100%-PPO bout.Results:Back-extrapolation of the GE data resulted in a calculated GE of 15.8% ± 1.7% at the end of the 100%-PPO bout, in contrast to 18.3% ± 1.3% during the final 2 min of the first 10-min 50%-PPO bout.Conclusion:Back-extrapolation seems valuable in providing more insight in GE during high-intensity exercise.


2007 ◽  
Vol 293 (1) ◽  
pp. R392-R401 ◽  
Author(s):  
Andrew M. Jones ◽  
Daryl P. Wilkerson ◽  
Nicolas J. Berger ◽  
Jonathan Fulford

We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 ± 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 ± 2.3 min vs. postintervention group (POST): 19.4 ± 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 ± 1.6 min vs. POST: 22.0 ± 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 ± 13 s vs. POST: 43 ± 10 s) or the trained leg (PRE: 38 ± 8 s vs. POST: 40 ± 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 ± 7 vs. POST: 7 ± 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 ± 8 vs. POST: 12 ± 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.


Author(s):  
Zivile Pranskuniene ◽  
Egle Belousoviene ◽  
Neringa Baranauskiene ◽  
Nerijus Eimantas ◽  
Egle Vaitkaitiene ◽  
...  

The natural components of the pomegranate fruit may provide additional benefits for endothelial function and microcirculation. It was hypothesized that supplementation with pomegranate extract might improve glycocalyx properties and microcirculation during acute high-intensity sprint interval cycling exercise. Eighteen healthy and recreationally active male volunteers 22–28 years of age were recruited randomly to the experimental and control groups. The experimental group was supplemented with pomegranate extract 20 mL (720 mg phenolic compounds) for two weeks. At the beginning and end of the study, the participants completed a high-intensity sprint interval cycling-exercise protocol. The microcirculation flow and density parameters, glycocalyx markers, systemic hemodynamics, lactate, and glucose concentration were evaluated before and after the initial and repeated (after 2 weeks supplementation) exercise bouts. There were no significant differences in the microcirculation or glycocalyx over the course of the study (p < 0.05). The lactate concentration was significantly higher in both groups after the initial and repeated exercise bouts, and were significantly higher in the experimental group compared to the control group after the repeated bout: 13.2 (11.9–14.8) vs. 10.3 (9.3–12.7) mmol/L, p = 0.017. Two weeks of supplementation with pomegranate extract does not influence changes in the microcirculation and glycocalyx during acute high-intensity sprint interval cycling-exercise. Although an unexplained rise in blood lactate concentration was observed.


1986 ◽  
Vol 6 (10) ◽  
pp. 434
Author(s):  
Vickie Hollingsworth ◽  
Barry Franklin ◽  
Jim Cameron ◽  
Seymour Gordon ◽  
C. Timmis Gerald

Sign in / Sign up

Export Citation Format

Share Document