Muscle Oxygenation Rather Than VO2max as a Strong Predictor of Performance in Sprint Canoe–Kayak

2018 ◽  
Vol 13 (10) ◽  
pp. 1299-1307 ◽  
Author(s):  
Myriam Paquette ◽  
François Bieuzen ◽  
François Billaut

Purpose: To characterize the relationships between muscle oxygenation and performance during on- and off-water tests in highly trained sprint canoe–kayak athletes. Methods: A total of 30 athletes (19 kayakers and 11 canoeists) performed a maximal incremental test on a canoe or kayak ergometer for determination of VO2max and examination of the relation between peak power output (PPO) and physiological parameters. A subset of 21 athletes also performed a 200- and a 500- (for women) or 1000-m (for men) on-water time trial (TT). Near-infrared spectroscopy monitors were placed on the latissimus dorsi, biceps brachii, and vastus lateralis during all tests to assess changes in muscle O2 saturation (SmO2) and deoxyhemoglobin concentration ([HHb]). The minimum O2 oxygenation (SmO2min) and maximal O2 (Δ[HHb] extraction) were calculated for all subjects. Results: PPO was most strongly correlated with VO2max (R = .9), but there was also a large correlation between PPO and both SmO2min and Δ[HHb] in latissimus dorsi (R = −.5, R = .6) and vastus lateralis (R = −.6, R = .6, all P < .05). Multiple regression showed that 90% of the variance in 200-m performance was explained by both Δ[HHb] and SmO2min in the 3 muscles combined (P < .01) and 71% of the variance in 500-/1000-m performance was explained by Δ[HHb] in the 3 muscles (P < .01). This suggests that O2 extraction is a better predictor of performance than VO2max in sprint canoe–kayak. Conclusions: These results highlight the importance of peripheral adaptations in both short and long events and stress the relevance of adding muscle oxygenation measurements during testing and racing in sprint canoe–kayak.

2007 ◽  
Vol 103 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Andrew W. Subudhi ◽  
Andrew C. Dimmen ◽  
Robert C. Roach

To determine if fatigue at maximal aerobic power output was associated with a critical decrease in cerebral oxygenation, 13 male cyclists performed incremental maximal exercise tests (25 W/min ramp) under normoxic (Norm: 21% FiO2) and acute hypoxic (Hypox: 12% FiO2) conditions. Near-infrared spectroscopy (NIRS) was used to monitor concentration (μM) changes of oxy- and deoxyhemoglobin (Δ[O2Hb], Δ[HHb]) in the left vastus lateralis muscle and frontal cerebral cortex. Changes in total Hb were calculated (Δ[THb] = Δ[O2Hb] + Δ[HHb]) and used as an index of change in regional blood volume. Repeated-measures ANOVA were performed across treatments and work rates (α = 0.05). During Norm, cerebral oxygenation rose between 25 and 75% peak power output {Powerpeak; increased (inc) Δ[O2Hb], inc. Δ[HHb], inc. Δ[THb]}, but fell from 75 to 100% Powerpeak {decreased (dec) Δ[O2Hb], inc. Δ[HHb], no change Δ[THb]}. In contrast, during Hypox, cerebral oxygenation dropped progressively across all work rates (dec. Δ[O2Hb], inc. Δ[HHb]), whereas Δ[THb] again rose up to 75% Powerpeak and remained constant thereafter. Changes in cerebral oxygenation during Hypox were larger than Norm. In muscle, oxygenation decreased progressively throughout exercise in both Norm and Hypox (dec. Δ[O2Hb], inc. Δ [HHb], inc. Δ[THb]), although Δ[O2Hb] was unchanged between 75 and 100% Powerpeak. Changes in muscle oxygenation were also greater in Hypox compared with Norm. On the basis of these findings, it is unlikely that changes in cerebral oxygenation limit incremental exercise performance in normoxia, yet it is possible that such changes play a more pivotal role in hypoxia.


2004 ◽  
Vol 29 (4) ◽  
pp. 504-523 ◽  
Author(s):  
Yagesh N. Bhambhani

During the last decade, NIRS has been used extensively to evaluate the changes in muscle oxygenation and blood volume during a variety of exercise modes. The important findings from this research are as follows: (a) There is a strong correlation between the lactate (ventilatory) threshold during incremental cycle exercise and the exaggerated reduction in muscle oxygenation measured by NIRS. (b) The delay in steady-state oxygen uptake during constant work rate exercise at intensities above the lactate/ventilatory threshold is closely related to changes in muscle oxygenation measured by NIRS. (c) The degree of muscle deoxygenation at the same absolute oxygen uptake is significantly lower in older persons compared younger persons; however, these changes are negated when muscle oxygenation is expressed relative to maximal oxygen uptake values. (d) There is no significant difference between the rate of biceps brachii and vastus lateralis deoxygenation during arm cranking and leg cycling exercise, respectively, in males and females. (e) Muscle deoxygenation trends recorded during short duration, high-intensity exercise such as the Wingate test indicate that there is a substantial degree of aerobic metabolism during such exercise. Recent studies that have used NIRS at multiple sites, such as brain and muscle tissue, provide useful information pertaining to the regional changes in oxygen availability in these tissues during dynamic exercise. Key words: blood volume, noninvasive measurement


2021 ◽  
Vol 3 (122) ◽  
pp. 42-58
Author(s):  
Antoine Jolicoeur Desroches ◽  
Frédéric Domingue ◽  
Louis Laurencelle ◽  
Claude Lajoie

This study aimed to determine the effects of consuming a high fat solution (HFS) compared to a high carbohydrate solution (HCS) during a cycling effort on substrate oxidation, muscle oxygenation and performance with cyclists and triathletes. Thirteen men participated in this study (age: 30.4 ± 6.3 y; height: 178.7 ± 6.1 cm; weight: 74.9 ± 6.5 kg; V̇O2 peak: 60.5 ± 7.9 mlO2×kg-1×min-1). The solutions were isocaloric (total of 720 kcal) and were consumed every 20 minutes. Each solution of HFS contained 12.78 g of lipids, 1.33 g of carbohydrates and 0.67 g of proteins, and each solution of HCS contained 28 g of carbohydrates. We measured pulmonary oxygen consumption and skeletal muscle oxygenation, using a Near Infrared Spectrometer (NIRS) during a cycling effort consisting of 2 hours at 65 % of maximal aerobic power (MAP) followed immediately by a 3-minute time-trial (TT). We observed that the consumption of the HFS increased the rate of fat oxidation at the end of the sub-maximal effort (0.61 ± 0.14 vs 0.53 ± 0.17 g×min-1, p < 0.05). We have also shown that the HFS negatively affected the performance in the TT (mean Watts: HCS: 347.0 ± 77.4 vs HFS: 326.5 ± 88.8 W; p < 0.05) and the rating of perceived exertions during the sub-maximal effort (modified Borg Perceived Exertion scale: 1–10) (mean: 3.62 ± 0.58 for HCS vs 4.16 ± 0.62 for HFS; p < 0.05). We did not observe a significant effect of the acute consumption of the HFS compared to the HCS on muscle oxygenation during the cycling effort. Finally, we observed that cyclists who demonstrated a high skeletal muscle deoxygenation relative to their pulmonary oxygen consumption (DHHb/V̇O2) had a higher fat oxidation capacity (higher Fatmax). In conclusion, even though the consumption of HFS increased the rate of fat oxidation at the end of a sub-maximal effort, it did not affect muscle oxygenation and it negatively affected performance and perceived exertion during a time-trial and caused gastro-intestinal distress in some participants. Keywords: Fat oxidation, Skeletal muscle oxygenation, Lipid supplementation, Carbohydrate supplementation, Near Infrared Spectroscopy (NIRS), Cycling, Triathlon.


2006 ◽  
Vol 31 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Kotaro Kawaguchi ◽  
Yukiko Hayashi ◽  
Kiyokazu Sekikawa ◽  
Mitsuru Tabusadani ◽  
Tsutomu Inamizu ◽  
...  

This study examined the relationship between acute cardiorespiratory and muscle oxygenation and blood volume changes during prolonged exercise. Eight healthy male volunteers (mean maximum oxygen uptake ([Formula: see text]O2max) = 41.6 ± 2.4 mL/kg/min) performed 60 min submaximal cycling at 50% [Formula: see text]O2max. Oxygen uptake ([Formula: see text]O2) was measured by indirect spirometry, cardiac output (CO) was estimated using a PortapresTM, and right vastus lateralis oxyhemoglobin/ myoglobin (oxyHb/Mb), deoxyhemoglobin/myoglobin (deoxyHb/Mb), and total hemoglobin/myoglobin (total Hb/Mb) were recorded using near-infrared spectroscopy (NIRS). After 40 min of exercise, there was a significant increase in [Formula: see text]O2 due to a significantly higher arteriovenous oxygen difference ((a - v)O2diff). After 30 min of exercise CO remained unchanged, but there was a significant decrease in stroke volume and a proportionate increase in heart rate, thus indicating the occurrence of cardiovascular drift. During the first few minutes of exercise, there was a decline in oxyHb/Mb and total Hb/Mb, whereas deoxyHb/Mb remained unchanged. Thereafter, oxyHb/Mb and total Hb/Mb increased systematically until the termination of exercise while deoxyHb/Mb declined. After 40 min of exercise, these changes were significantly different from the baseline values. There were no significant correlations between the changes in the NIRS variables and systemic [Formula: see text]O2 or mixed (a - v)O2diff during exercise. These results suggest that factors other than localized changes in muscle oxygenation and blood volume account for the increased [Formula: see text]O2 during prolonged submaximal exercise. Key words: near infrared spectroscopy, cardiovascular drift, systemic oxygen consumption.


2017 ◽  
Vol 57 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Atle Hole Saeterbakken ◽  
Dag-André Mo ◽  
Suzanne Scott ◽  
Vidar Andersen

AbstractThe aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes.


Author(s):  
Massimo Venturelli ◽  
Cantor Tarperi ◽  
Chiara Milanese ◽  
Luca Festa ◽  
Luana Toniolo ◽  
...  

To investigate how leg preference affects net efficiency (ηnet), we examined central and peripheral hemodynamics, muscle fiber type, activation and force of preferred (PL) and non-preferred (NPL) leg. Our hypothesis was that PL greater efficiency could be explained by adaptations and interactions between central, peripheral factors and force. Fifteen young participants performed single-leg extension exercise at absolute (35W) and relative (50%peak power-output (Wpeak)) workloads with PL and NPL. Oxygen uptake, photoplethysmography, Doppler ultrasound, near-infrared-spectroscopy deoxy-hemoglobin [HHb], integrated electromyography (iEMG), maximal isometric force (MVC), rate of force development (RFD50-100) and muscle biopsies of both vastus lateralis, were studied to assess central and peripheral determinants of ηnet. During exercise executed at 35W, ηnet was 17.5±5.1% and 11.9±2.1% (p<0.01) in NP and NPL respectively, while during exercise at the 50% of Wpeak, was in PL = 18.1±5.1% and in NPL = 12.5±1.9 (p<0.01). The only parameter correlated with ηnet was iEMG which showed an inverse correlation for absolute (r=-0.83 and -0.69 for PL and NPL) and relative workloads (r=-0.92 and -0.79 for PL and NPL). MVC and RFD50-100 were higher in PL than in NPL but not correlated to ηnet. This study identified a critical role of leg preference in the efficiency during single-leg extension exercise. The whole spectrum of the central and peripheral, circulatory and muscular determinants of ηnet did not explain the difference between PL and NPL efficiency. Therefore, the lower muscle activation exhibited by the PL is likely the primary determinant of this physiological phenomenon.


2009 ◽  
Vol 4 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Andrew D. Williams ◽  
Isaac Selva Raj ◽  
Kristie L. Stucas ◽  
James W. Fell ◽  
Diana Dickenson ◽  
...  

Objectives:Uncoupled cycling cranks are designed to remove the ability of one leg to assist the other during the cycling action. It has been suggested that training with this type of crank can increase mechanical efficiency. However, whether these improvements can confer performance enhancement in already well-trained cyclists has not been reported.Method:Fourteen well-trained cyclists (13 males, 1 female; 32.4 ± 8.8 y; 74.5 ± 10.3 kg; Vo2max 60.6 ± 5.5 mL·kg−1·min−1; mean ± SD) participated in this study. Participants were randomized to training on a stationary bicycle using either an uncoupled (n = 7) or traditional crank (n = 7) system. Training involved 1-h sessions, 3 days per week for 6 weeks, and at a heart rate equivalent to 70% of peak power output (PPO) substituted into the training schedule in place of other training. Vo2max, lactate threshold, gross efficiency, and cycling performance were measured before and following the training intervention. Pre- and post testing was conducted using traditional cranks.Results:No differences were observed between the groups for changes in Vo2max, lactate threshold, gross efficiency, or average power maintained during a 30-minute time trial.Conclusion:Our results indicate that 6 weeks (18 sessions) of training using an uncoupled crank system does not result in changes in any physiological or performance measures in well-trained cyclists.


2000 ◽  
Vol 89 (6) ◽  
pp. 2220-2226 ◽  
Author(s):  
Mark A. Febbraio ◽  
Alison Chiu ◽  
Damien J. Angus ◽  
Melissa J. Arkinstall ◽  
John A. Hawley

We investigated the effect of carbohydrate (CHO) ingestion before and during exercise and in combination on glucose kinetics, metabolism and performance in seven trained men, who cycled for 120 min (SS) at ∼63% of peak power output, followed by a 7 kJ/kg body wt time trial (TT). On four separate occasions, subjects received either a placebo beverage before and during SS (PP); placebo 30 min before and 2 g/kg body wt of CHO in a 6.4% CHO solution throughout SS (PC); 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and placebo throughout SS (CP); or 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and 2 g/kg of CHO in a 6.4% CHO solution throughout SS (CC). Ingestion of CC and CP markedly (>8 mM) increased plasma glucose concentration ([glucose]) compared with PP and PC (5 mM). However, plasma [glucose] fell rapidly at the onset of SS so that after 80 min it was similar (6 mM) between all treatments. After this time, plasma [glucose] declined in both PP and CP ( P < 0.05) but was well maintained in both CC and PC. Ingestion of CC and CP increased rates of glucose appearance (Ra) and disappearance (Rd) compared with PP and PC at the onset of, and early during, SS ( P < 0.05). However, late in SS, both glucose Ra and Rd were higher in CC and PC compared with other trials ( P < 0.05). Although calculated rates of glucose oxidation were different when comparing the four trials ( P < 0.05), total CHO oxidation and total fat oxidation were similar. Despite this, TT was improved in CC and PC compared with PP ( P < 0.05). We conclude that 1) preexercise ingestion of CHO improves performance only when CHO ingestion is maintained throughout exercise, and 2) ingestion of CHO during 120 min of cycling improves subsequent TT performance.


Author(s):  
Theresa Schörkmaier ◽  
Yvonne Wahl ◽  
Christian Brinkmann ◽  
Wilhelm Bloch ◽  
Patrick Wahl

AbstractRecent studies have shown that the oxygenated hemoglobin level can be enhanced during rest through the application of nonivamide-nicoboxil cream. However, the effect of nonivamide-nicoboxil cream on oxygenation and endurance performance under hypoxic conditions is unknown. Therefore, the purpose of this study was to investigate the effects of nonivamide-nicoboxil cream on local muscle oxygenation and endurance performance under normoxic and hypoxic conditions. In a cross-over design, 13 athletes (experienced cyclists or triathletes [age: 25.2±3.5 years; VO2max 62.1±7.3 mL·min−1·kg−1]) performed four incremental exercise tests on the cycle ergometer under normoxic or hypoxic conditions, either with nonivamide-nicoboxil or placebo cream. Muscle oxygenation was recorded with near-infrared spectroscopy. Capillary blood samples were taken after each step, and spirometric data were recorded continuously. The application of nonivamide-nicoboxil cream increased muscle oxygenation at rest and during different submaximal workloads as well as during physical exhaustion, irrespective of normoxic or hypoxic conditions. Overall, there were no significant effects of nonivamide-nicoboxil on peak power output, maximal oxygen uptake or lactate concentrations. Muscle oxygenation is significantly higher with the application of nonivamide-nicoboxil cream. However, its application does not increase endurance performance.


2014 ◽  
Vol 9 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Gregory T. Levin ◽  
Paul B. Laursen ◽  
Chris R. Abbiss

Purpose:To assess the reliability of a 5-min-stage graded exercise test (GXT) and determine the association between physiological attributes and performance over stochastic cycling trials of varying distance.Methods:Twenty-eight well-trained male cyclists performed 2 GXTs and either a 30-km (n = 17) or a 100-km stochastic cycling time trial (n = 9). Stochastic cycling trials included periods of high-intensity efforts for durations of 250 m, 1 km, or 4 km depending on the test being performing.Results:Maximal physiological attributes were found to be extremely reliable (maximal oxygen uptake [VO2max]: coefficient of variation [CV] 3.0%, intraclass correlation coefficient [ICC] .911; peak power output [PPO]: CV 3.0%, ICC .913), but a greater variability was found in ventilatory thresholds and economy. All physiological variables measured during the GXT, except economy at 200 W, were correlated with 30-km cycling performance. Power output during the 250-m and 1-km efforts of the 30-km trial were correlated with VO2max, PPO, and the power output at the second ventilatory threshold (r = .58–.82). PPO was the only physiological attributed measured during the GXT to be correlated with performance during the 100-km cycling trial (r = .64).Conclusions:Many physiological variables from a reliable GXT were associated with performance over shorter (30-km) but not longer (100-km) stochastic cycling trials.


Sign in / Sign up

Export Citation Format

Share Document