An Evaluation of Training Load Measures for Drills in Women’s Collegiate Lacrosse

Author(s):  
Jennifer A. Bunn ◽  
Bradley J. Myers ◽  
Mary K. Reagor

Purpose: To statistically evaluate the internal and external load metrics in different types of lacrosse drills. Methods: A total of 25 Division I collegiate female lacrosse players wore a heart rate monitor and a global positioning system during preseason training sessions. Seven measures determined training load, 2 internal measures and 5 external measures, across 5 different types of drills: stickwork, small-sided games, individual skills, conditioning, and team drills. Principal component analysis was used to determine which internal and external load variables were most associated with each drill type. Results: Stickwork extracted 2 principal components, explaining 45% and 17% of the variance. Small-sided games extracted 1 principal component, explaining 51% of the variance. Individual skills extracted 2 components, explaining 39% and 22% of the variance. Conditioning extracted 2 components, explaining 44% and 24% of the variance. Team drills extracted 2 components, explaining 52% and 18% of the variance. Conclusions: In 4 out of 5 training modes, the inclusion of both internal and external training-load measures was necessary to accurately decipher training load. For most drills, the first component is related to measures of external load, and the second component described the balance between internal and external load measures. Small-sided games extracted only external measures including the following: accelerations, total distance, and average speed. These results show that a combination of internal and external load measures is required to determine training load during certain training modes. This information can help coaches make decisions about desired training load for practice sessions.

Author(s):  
Garrison Draper ◽  
Matthew Wright ◽  
Paul Chesterton ◽  
Greg Atkinson

The aim was to assess factor structure of player-reported fatigue and quantify within-subjects association between changes in training load measures and next day player-reported fatigue at different time points of an elite football season. Using longitudinal research design, twenty-four professional footballers, mean (SD) age of 25.7 (3.4) years, were monitored during their competitive season, including pre-season. Player-reported fatigue data and session ratings of perceived exertion (session-RPE) were collected via a mobile application. Player’s Heart rate (HR) and global positioning system (GPS) data were collected daily for each player in field sessions. Principal component analysis (PCA) indicated three components with Eigenvalues above 1.0; “soreness”, “mood, and “hydration”. Within-player correlations between training load values and next day player-reported fatigue values were trivial to moderate (r ≈ −0.42 to −0.04). In-season we observed large correlations between Total Distance (TD) and PlayerLoad with Soreness (r = −0.55, 95% CI: −0.62 to −0.46; r = −.054, 95% CI: −0.62 to −0.46), but during pre-season, correlations were small (r = −0.15, 95% CI: −0.28 to −0.01; r = −0.13, 95% CI: −0.26 to 0.01). The HR TRIMP, TD and session-RPE measures each showed trivial to moderate correlations (r ≈ −0.41 to −0.08) with next day “mood”. Our in-house player-reported fatigue questionnaire was sensitive to the multi-dimensional nature of fatigue, identifying physiological (soreness), psychological (mood and stress) and nutritional (hydration and nutrition) components. We found the in-season correlations with training load to be greater than previously reported in the literature, specifically with next day player-reported “soreness”. Nevertheless, the correlations between the items of our scale and pre-season training load were small.


Author(s):  
Sullivan Coppalle ◽  
Guillaume Ravé ◽  
Jason Moran ◽  
Iyed Salhi ◽  
Abderraouf Ben Abderrahman ◽  
...  

This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p =0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p =0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT.


2018 ◽  
Vol 13 (7) ◽  
pp. 947-952 ◽  
Author(s):  
Luka Svilar ◽  
Julen Castellano ◽  
Igor Jukic ◽  
David Casamichana

Purpose: To study the structure of interrelationships among external-training-load measures and how these vary among different positions in elite basketball. Methods: Eight external variables of jumping (JUMP), acceleration (ACC), deceleration (DEC), and change of direction (COD) and 2 internal-load variables (rating of perceived exertion [RPE] and session RPE) were collected from 13 professional players with 300 session records. Three playing positions were considered: guards (n = 4), forwards (n = 4), and centers (n = 5). High and total external variables (hJUMP and tJUMP, hACC and tACC, hDEC and tDEC, and hCOD and tCOD) were used for the principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Varimax rotation mode was used to extract multiple principal components. Results: The analysis showed that all positions had 2 or 3 principal components (explaining almost all of the variance), but the configuration of each factor was different: tACC, tDEC, tCOD, and hJUMP for centers; hACC, tACC, tCOD, and hJUMP for guards; and tACC, hDEC, tDEC, hCOD, and tCOD for forwards are specifically demanded in training sessions, and therefore these variables must be prioritized in load monitoring. Furthermore, for all playing positions, RPE and session RPE have high correlation with the total amount of ACC, DEC, and COD. This would suggest that although players perform the same training tasks, the demands of each position can vary. Conclusion: A particular combination of external-load measures is required to describe the training load of each playing position, especially to better understand internal responses among players.


2020 ◽  
Vol 15 (5) ◽  
pp. 696-704
Author(s):  
Håvard Wiig ◽  
Thor Einar Andersen ◽  
Live S. Luteberget ◽  
Matt Spencer

Purpose: To investigate within-player effect, between-player effect, and individual response of external training load from player tracking devices on session rating of perceived exertion training load (sRPE-TL) in elite football players. Methods: The authors collected sRPE-TL from 18 outfield players in 21 training sessions. Total distance, high-speed running distance (>14.4 m/s), very high-speed running distance (>19.8 m/s), PlayerLoad™, PlayerLoad2D™, and high-intensity events (HIE > 1.5, HIE > 2.5, and HIE > 3.5 m/s) were extracted from the tracking devices. The authors modeled within-player and between-player effects of single external load variables on sRPE-TL, and multiple levels of variability, using a linear mixed model. The effect of 2 SDs of external load on sRPE-TL was evaluated with magnitude-based inferences. Results: Total distance, PlayerLoad™, PlayerLoad2D™, and HIE > 1.5 had most likely substantial within-player effects on sRPE-TL (100%–106%, very large effect sizes). Moreover, the authors observed likely substantial between-player effects (12%–19%, small to moderate effect sizes) from the majority of the external load variables and likely to very likely substantial individual responses of PlayerLoad™, high-speed running distance, very high-speed running distance, and HIE > 1.5 (19%–30% coefficient of variation, moderate to large effect sizes). Finally, sRPE-TL showed large to very large between-session variability with all external load variables. Conclusions: External load variables with low intensity-thresholds had the strongest relationship with sRPE-TL. Furthermore, the between-player effect of external load and the individual response to external load advocate for monitoring sRPE-TL in addition to external load. Finally, the large between-session variability in sRPE-TL demonstrates that substantial amounts of sRPE-TL in training sessions are not explained by single external load variables.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Filipe Manuel Clemente ◽  
Pantelis Theodoros Nikolaidis ◽  
Cornelis M. I. Niels Van Der Linden ◽  
Bruno Silva

AbstractPurpose. The aim of the study was to examine the influence of small-sided and conditioned games (SSG) on the internal load (heart rate [HR] and perceived exertion), external load (Global Positioning System variables), and lower limb power (squat jump [SJ] and countermovement jump [CMJ]).Methods. Six collegiate male soccer players (age 20.3 ± 4.8 years; maximal oxygen uptake 42.9 ± 2.7 ml/kg/min; maximal HR 184.7 bpm) performed three 2-min bouts of 1 vs. 1 and two 3-min bouts of 3 vs. 3 format with a work-to-rest ratio of 1:1.5. Two-way ANOVA with repeated measures tested the effects of bouts and SSG formats on the internal and external load and on the lower limb power.Results. The 3Conclusions. Physiological and physical responses varied during bouts. Nevertheless, small differences between SSG formats were found. SSG bouts did not have significant impact on the lower limb power.


Author(s):  
Andrew Guard ◽  
Kenneth McMillan ◽  
Niall MacFarlane

The aim of the study was to compare internal and external load responses of different small-sided games, using balanced (5v5 Possession and small-sided games formats) and unbalanced (6v4) teams. Ten elite youth male soccer players were monitored at the start of the in-season period using global positioning system, heart rate and subjective ratings of intensity. Results showed higher physiological stress (>90% HRmax) in Possession and small-sided games formats when compared to the unbalanced teams (ES = 1.3–2.3). Total and high-intensity distance in small-sided games (28 ± 25 m) and Possession (67 ± 35 m) were greater compared to teams of 6 and 4 in the unbalanced scenario. Small-sided games format and team with six players had higher proportion of distance running at sub-maximal velocities (0–5.8 m/s2). Small-sided games format and team with four players saw greater mean acceleration effort (mean acceleration intensity in small-sided games 1.91 ± 0.27 vs. Possession 1.80 ± 0.20 m/s2, ES = 0.4 and Team 4 1.56 ± 0.24 vs. Team 6 1.44 ± .0.19 m/s2, ES = 1.3). Small-sided games format and team with 6 players had lower starting velocities prior to acceleration efforts (small-sided games 0.90 ± 0.08 and Team 6 1.11 ± 0.11 m/s2, ES = 1.5 and ES = 1.8), while velocity at the end of each acceleration effort was greater in the Possession format and Team 4 compared to small-sided games and Team 6 (Possession 3.54 ± 0.23 m/s2 and Team 4 3.13 ± 0.22 m/s2) compared to the small-sided games format (ES = 0.1) and the team with six players (ES = 2.3). These data demonstrate that using unbalanced teams can provide an additional form of training prescription to facilitate player specific training within a squad environment by providing different internal and external training responses within a combined drill.


Sports ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 139
Author(s):  
Toni Modric ◽  
Mario Jelicic ◽  
Damir Sekulic

Previous studies examined training/match ratios (TMr) to determine the training load relative to the match load, but the influence of the relative training load (RTL) on success in soccer is still unknown. Therefore, this study aimed to investigate the possible influence of RTL on final match outcome in soccer (win, draw, and loss). Running performances (RP) of soccer players (n = 21) in the Croatian highest national soccer competition were analyzed during the season 2020–2021. Data were measured by the global positioning system in 14 official matches and 67 training sessions. RTL was assessed by TMr, which were calculated as the ratio of RP during training and match in the same week, evaluating the following measures: TDr (total distance ratio), LIDr (low-intensity distance ratio), RDr (running distance ratio), HIDr (high-intensity distance ratio), ACCr (total accelerations ratio), DECr (total decelerations ratio), HI-ACCr (high-intensity accelerations ratio), HI-DECr (high-intensity decelerations ratio). All TMr were examined separately for each training session within in-season microcycles (categorized as days before the match day, i.e., MD minus). Spearman correlations were used to identify association between match outcome and TMr. The results indicated negative associations between match outcome and TDr, LIDr, ACCr and DECr on MD-1 and MD-2). In contrast, positive associations were evidenced between match outcome, and HIDr on MD-3 and TDr, LIDr, ACCr and DECr on MD-5 (p < 0.05; all moderate correlations). These findings demonstrate that final match outcome in soccer was associated with greater RTL of (i) high-intensity running three days before the match, (ii) total and low-intensity running, accelerations and decelerations five days before the match, and (iii) lower RTL of total and low-intensity running, accelerations and decelerations one and two days before the match.


2014 ◽  
Vol 9 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Dan Weaving ◽  
Phil Marshall ◽  
Keith Earle ◽  
Alan Nevill ◽  
Grant Abt

Purpose:This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.Methods:Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.Results:Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.Conclusions:In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.


2019 ◽  
Vol 5 (1) ◽  
pp. e000613 ◽  
Author(s):  
John J Davis IV ◽  
Allison H Gruber

The very term ‘running-related overuse injury’ implies the importance of ‘use’, or exposure, to running. Risk factors for running-related injury can be better understood when exposure to running is quantified using either external or internal training loads. The advent of objective methods for quantifying exposure to running, such as global positioning system watches, smartphones, commercial activity monitors and research-grade wearable sensors, make it possible for researchers, coaches and clinicians to track exposure to running with unprecedented detail. This viewpoint discusses practical issues surrounding the use and analysis of data from such devices, including how wearable devices can be used to assess both internal and external training loads. We advocate for an integrative approach where data from multiple sources are used in combination to directly measure exposure to running in diverse settings.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Alejandro Zamora Restan ◽  
Aparecido Antonio Camacho ◽  
Evandro Zacché ◽  
Raphaela Arantes Marques Canola ◽  
Samara Beretta Gomes Silva ◽  
...  

This research focuses on the adjustments in systolic and diastolic functions that are not fully understood in dogs submitted to athletic training. Beagle dogs carried out an endurance training program (ETP) prescribed from the external training load, corresponding to 70–80% of the lactate threshold (VLT) velocity. Eighteen dogs were randomly assigned to two groups: control (C, n = 8), active dogs that did not perform any forced exercise, and trained (T, n = 10), submitted to the ETP during eight weeks. All dogs were evaluated before and after the ETP period using two-dimensional echocardiography, M-mode, Doppler, and two-dimensional speckle tracking. A principal component analysis (PCA) of the echocardiographic variables was performed. The ETP improved the left ventricular internal dimension at the end of diastole (LVDd), the left ventricular internal dimension at the end of diastole to aorta ratio (LVDd: Ao), and the strain rate indices. PCA was able to capture the dimensionality and qualitative echocardiography changes produced by the ETP. These findings indicated that the training prescribed based on the lactate threshold improved the diastolic and systolic functions. This response may be applied to improve myocardial function, promote health, and mitigate any injuries produced during heart failure.


Sign in / Sign up

Export Citation Format

Share Document