scholarly journals Differences in Physiological and Perceptual Responses to High Intensity Interval Exercise Between Arm and Leg Cycling

2021 ◽  
Vol 12 ◽  
Author(s):  
Todd A. Astorino ◽  
Danielle Emma

This study compared changes in oxygen uptake (VO2), heart rate (HR), blood lactate concentration (BLa), affective valence, and rating of perceived exertion (RPE) between sessions of high intensity interval exercise (HIIE) performed on the arm (ACE) and leg cycle ergometer (LCE). Twenty three active and non-obese men and women (age and BMI=24.7±5.8year and 24.8±3.4kg/m2) initially underwent graded exercise testing to determine VO2max and peak power output (PPO) on both ergometers. Subsequently on two separate days, they performed 10 1min intervals of ACE or LCE at 75 %PPO separated by 1min of active recovery at 10 %PPO. Gas exchange data, HR, and perceptual responses were obtained continuously and blood samples were acquired pre- and post-exercise to assess the change in BLa. VO2max and PPO on the LCE were significantly higher (p<0.001) than ACE (37.2±6.3 vs. 26.3±6.6ml/kg/min and 259.0±48.0 vs. 120.0±48.1W). Mean VO2 (1.7±0.3 vs. 1.1±0.3L/min, d=2.3) and HR (149±14 vs. 131±17 b/min, d=2.1) were higher (p<0.001) in response to LCE vs. ACE as was BLa (7.6±2.6 vs. 5.3±2.5mM, d=2.3), yet there was no difference (p=0.12) in peak VO2 or HR. Leg cycling elicited higher relative HR compared to ACE (81±5 vs. 75±7 %HRmax, p=0.01), although, there was no difference in relative VO2 (63±6 vs. 60±8 %VO2max, p=0.09) between modes. Affective valence was lower during LCE vs. ACE (p=0.003), although no differences in enjoyment (p=0.68) or RPE (p=0.59) were demonstrated. Overall, HIIE performed on the cycle ergometer elicits higher relative heart rate and blood lactate concentration and a more aversive affective valence, making these modes not interchangeable in terms of the acute physiological and perceptual response to interval based exercise.

2020 ◽  
pp. 1-8
Author(s):  
Jeanette M. Ricci ◽  
Todd A. Astorino ◽  
Katharine D. Currie ◽  
Karin A. Pfeiffer

The majority of studies examining children’s responses to high-intensity interval exercise primarily utilized running; however, this modality does not require/include other important aspects of physical activity including muscular fitness. Purpose: To compare acute responses between a body weight resistance exercise circuit (CIRC) and treadmill-based (TM) high-intensity interval exercise. Method: A total of 17 boys (age = 9.7 [1.3] y) completed a graded exercise test to determine peak heart rate, peak oxygen uptake (VO2peak), and maximal aerobic speed. Sessions were randomized and counterbalanced. CIRC required 2 sets of 30-second maximal repetitions of 4 exercises. TM included eight 30-second bouts of running at 100% maximal aerobic speed. Both included 30-second active recovery between bouts. Blood lactate concentration was measured preexercise and postexercise. Rating of perceived exertion, affective valence, and enjoyment were recorded preexercise, after intervals 3 and 6, and postexercise. Results: Participants attained 88% (5%) peak heart rate and 74% (9%) VO2peak for CIRC and 89% (4%) peak heart rate and 81% (6%) VO2peak for TM, with a significant difference in percentage of VO2peak (P = .003) between protocols. Postexercise blood lactate concentration was higher following CIRC (5.0 [0.7] mM) versus TM (2.0 [0.3] mM) (P < .001). Rating of perceived exertion, affective valence, and enjoyment responses did not differ between protocols (P > .05). Conclusion: HR responses were near maximal during CIRC, supporting that this body-weight circuit is representative of high-intensity interval exercise.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200690 ◽  
Author(s):  
Diego Warr-di Piero ◽  
Teresa Valverde-Esteve ◽  
Juan Carlos Redondo-Castán ◽  
Carlos Pablos-Abella ◽  
José Vicente Sánchez-Alarcos Díaz-Pintado

2014 ◽  
Vol 9 (3) ◽  
pp. 471-479 ◽  
Author(s):  
Jack D. Ade ◽  
Jamie A. Harley ◽  
Paul S. Bradley

Purpose:To quantify the physiological responses, time–motion characteristics, and reproducibility of various speed-endurance-production (SEP) and speed-endurance-maintenance (SEM) drills.Methods:Sixteen elite male youth soccer players completed 4 drills: SEP 1 v 1 small-sided game (SSG), SEP running drill, SEM 2 v 2 SSG, and SEM running drill. Heart-rate response, blood lactate concentration, subjective rating of perceived exertion (RPE), and time–motion characteristics were recorded for each drill.Results:The SEP and SEM running drills elicited greater (P < .05) heart-rate responses, blood lactate concentrations, and RPE than the respective SSGs (ES 1.1–1.4 and 1.0–3.2). Players covered less (P < .01) total distance and high-intensity distance in the SEP and SEM SSGs than in the respective running drills (ES 6.0–22.1 and 3.0–18.4). Greater distances (P < .01) were covered in high to maximum acceleration/deceleration bands during the SEP and SEM SSGs than the respective running drills (ES 2.6–4.6 and 2.3–4.8). The SEP SSG and generic running protocols produced greater (P < .05) blood lactate concentrations than the respective SEM protocols (ES 1.2–1.7). Small to moderate test–retest variability was observed for heart-rate response (CV 0.9–1.9%), RPE (CV 2.9–5.7%), and blood lactate concentration (CV 9.9–14.4%); moderate to large test–retest variability was observed for high-intensity-running parameters (CV > 11.3%) and the majority of accelerations/deceleration distances (CV > 9.8%) for each drill.Conclusions:The data demonstrate the potential to tax the anaerobic energy system to different extents using speed-endurance SSGs and that SSGs elicit greater acceleration/deceleration load than generic running drills.


Author(s):  
Noah M.A. d’Unienville ◽  
Maximillian J. Nelson ◽  
Clint R. Bellenger ◽  
Henry T. Blake ◽  
Jonathan D. Buckley

Purpose: To prescribe training loads to improve performance, one must know how an athlete is responding to loading. The maximal rate of heart-rate increase (rHRI) during the transition from rest to exercise is linearly related to changes in endurance exercise performance and can be used to infer how athletes are responding to changes in training load. Relationships between rHRI and anaerobic exercise performance have not been evaluated. The objective of this study was to evaluate relationships between rHRI and anaerobic exercise performance. Methods: Eighteen recreational strength and power athletes (13 male and 5 female) were tested on a cycle ergometer for rHRI, 6-second peak power output, anaerobic capacity (30-s average power), and blood lactate concentration prior to (PRE), and 1 (POST1) and 3 (POST3) hours after fatiguing high-intensity interval cycling. Results: Compared with PRE, rHRI was slower at POST1 (effect size [ES] = −0.38, P = .045) but not POST3 (ES = −0.36, P = .11). PPO was not changed at POST1 (ES = −0.12, P = .19) but reduced at POST3 (ES = −0.52, P = .01). Anaerobic capacity was reduced at POST1 (ES = −1.24, P < .001) and POST3 (ES = −0.83, P < .001), and blood lactate concentration was increased at POST1 (ES = 1.73, P < .001) but not at POST3 (ES = 0.75, P = .11). rHRI was positively related to PPO (B = 0.19, P = .03) and anaerobic capacity (B = 0.14, P = .005) and inversely related to blood lactate concentration (B = −0.22, P = .04). Conclusions: rHRI is linearly related to acute changes in anaerobic exercise performance and may indicate how athletes are responding to training to guide the application of training loads.


2021 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Stefano Benítez-Flores ◽  
Carlos A. Magallanes ◽  
Cristine Lima Alberton ◽  
Todd A. Astorino

The aim of this study was to compare the acute responses to three time-matched exercise regimens. Ten trained adults (age, maximum oxygen consumption (VO2max), and body mass index (BMI) = 25.9 ± 5.6 yr, 50.9 ± 5.4 mL·kg−1·min−1, and 22.1 ± 1.8 kg·m−2) completed sprint interval training (SIT) requiring 14 × 5 s efforts with 35 s of recovery, high-intensity interval training (HIIT) consisting of 18 × 15 s efforts at ~90% of peak heart rate (HRpeak) with 15 s of recovery, and vigorous continuous training (CT) consisting of 8.75 min at ~85 %HRpeak, in randomized order. Heart rate, blood lactate concentration, rating of perceived exertion, affective valence, and enjoyment were monitored. Moreover, indices of neuromuscular function, autonomic balance, diet, mental stress, incidental physical activity (PA), and sleep were measured 24 h after each session to analyze the magnitude of recovery. Both HIIT and CT exhibited a greater %HRpeak and time ≥ 90 %HRpeak than SIT (p < 0.05). Blood lactate and rating of perceived exertion were higher in response to SIT and HIIT vs. CT (p < 0.05); however, there were no differences in enjoyment (p > 0.05). No differences were exhibited in any variable assessed along 24 h post-exercise between conditions (p > 0.05). These data suggest that HIIT and CT accumulate the longest duration at near maximal intensities, which is considered a key factor to enhance VO2max.


2018 ◽  
Vol 243 (14) ◽  
pp. 1153-1160 ◽  
Author(s):  
Alexandra L Rodriguez ◽  
Michael Whitehurst ◽  
Brandon G Fico ◽  
Katelyn M Dodge ◽  
Peter J Ferrandi ◽  
...  

Obesity may attenuate the expression of brain-derived neurotrophic factor (BDNF), thereby increasing the risk of cognitive dysfunction. High-intensity interval exercise (HIIE) has been shown to be as or more effective than continuous moderate-intensity exercise (CME) in promoting the expression of BDNF in normal-weight individuals. Therefore, the primary purpose of this study was to examine whether or not acute HIIE could be utilized as a practical model to explore the BDNF response in obese versus normal-weight subjects when compared to acute CME. The potential relationship of exercise-induced BDNF with blood lactate and cortisol was also examined. Twelve male subjects (six obese and six normal-weight) participated in a counterbalanced and caloric equated experiment: HIIE (30 min, 4 intervals of 4 min at 80%–90% of VO2max with 3 min of active recovery at 50–60% VO2max) and CME (38 min at 50%–60% VO2max). Blood samples were collected prior to, immediately following exercise, and 1 h into recovery for measurements of serum BDNF, blood lactate, and plasma cortisol. Our results showed that the BDNF response to acute HIIE was greater than CME in obese subjects when compared to normal-weight subjects. Similarly, although acute HIIE induced greater blood lactate and plasma cortisol levels than CME, obese subjects produced less blood lactate, but no difference in cortisol than normal-weight subjects. These findings suggest that acute HIIE may be a more effective protocol to upregulate BDNF expression in an obese population, independent of increased lactate and cortisol levels. Impact statement High-intensity interval exercise (HIIE) has been shown to be a time-efficient exercise strategy that provides similar or superior physiological benefits as traditional continuous moderate-intensity exercise (CME). Our previous study demonstrated an equivalent elevation on the BDNF response in both obese and normal-weight individuals following 30 min of acute CME. To discover a time-efficient exercise strategy to improve brain health in an obese population, the present study found that obese individuals elicit a greater level of BDNF following acute HIIE versus CME than normal-weight individuals. These findings indicate that acute HIIE may be an effective strategy to upregulate BDNF expression in obese individuals.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9791
Author(s):  
Gabriel V. Protzen ◽  
Charles Bartel ◽  
Victor S. Coswig ◽  
Paulo Gentil ◽  
Fabricio B. Del Vecchio

Background One of the most popular high-intensity interval exercises is the called “Tabata Protocol”. However, most investigations have limitations in describing the work intensity, and this fact appears to be due to the protocol unfeasibility. Furthermore, the physiological demands and energetic contribution during this kind of exercise remain unclear. Methods Eight physically active students (21.8 ± 3.7 years) and eight well-trained cycling athletes (27.8 ± 6.4 years) were enrolled. In the first visit, we collected descriptive data and the peak power output (PPO). On the next three visits, in random order, participants performed interval training with the same time structure (effort:rest 20s:10s) but using different intensities (115%, 130%, and 170% of PPO). We collected the number of sprints, power output, oxygen consumption, blood lactate, and heart rate. Results The analysis of variance for multivariate test (number of sprints, power output, blood lactate, peak heart rate and percentage of maximal heart rate) showed significant differences between groups (F = 9.62; p = 0.001) and intensities (F = 384.05; p < 0.001), with no interactions (F = 0.94; p = 0.57). All three energetic contributions and intensities were different between protocols. The higher contribution was aerobic, followed by alactic and lactic. The aerobic contribution was higher at 115%PPO, while the alactic system showed higher contribution at 130%PPO. In conclusion, the aerobic system was predominant in the three exercise protocols, and we observed a higher contribution at lower intensities.


2020 ◽  
Vol 7 (3-4) ◽  
pp. 100158 ◽  
Author(s):  
Zachery A. Roloff ◽  
Nathan D. Dicks ◽  
Luke M. Krynski ◽  
Mark E. Hartman ◽  
Panteleimon Ekkekakis ◽  
...  

Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


Sign in / Sign up

Export Citation Format

Share Document