scholarly journals Molecular parallelism in fast-twitch muscle proteins in echolocating mammals

2018 ◽  
Vol 4 (9) ◽  
pp. eaat9660 ◽  
Author(s):  
Jun-Hoe Lee ◽  
Kevin M. Lewis ◽  
Timothy W. Moural ◽  
Bogdan Kirilenko ◽  
Barbara Borgonovo ◽  
...  

Detecting associations between genomic changes and phenotypic differences is fundamental to understanding how phenotypes evolved. By systematically screening for parallel amino acid substitutions, we detected known as well as novel cases (Strc, Tecta, and Cabp2) of parallelism between echolocating bats and toothed whales in proteins that could contribute to high-frequency hearing adaptations. Our screen also showed that echolocating mammals exhibit an unusually high number of parallel substitutions in fast-twitch muscle fiber proteins. Both echolocating bats and toothed whales produce an extremely rapid call rate when homing in on their prey, which was shown in bats to be powered by specialized superfast muscles. We show that these genes with parallel substitutions (Casq1, Atp2a1, Myh2, and Myl1) are expressed in the superfast sound-producing muscle of bats. Furthermore, we found that the calcium storage protein calsequestrin 1 of the little brown bat and the bottlenose dolphin functionally converged in its ability to form calcium-sequestering polymers at lower calcium concentrations, which may contribute to rapid calcium transients required for superfast muscle physiology. The proteins that our genomic screen detected could be involved in the convergent evolution of vocalization in echolocating mammals by potentially contributing to both rapid Ca2+ transients and increased shortening velocities in superfast muscles.

2018 ◽  
Author(s):  
Jun-Hoe Lee ◽  
Kevin M Lewis ◽  
Timothy W Moural ◽  
Bogdan Kirilenko ◽  
Barbara Borgonovo ◽  
...  

AbstractDetecting associations between genomic changes and phenotypic differences is fundamental to understanding how phenotypes evolved. By systematically screening for parallel amino acid substitutions, we detected known as well as novel cases (Strc, Tecta, Cabp2) of parallelism between echolocating bats and toothed whales in proteins that could contribute to high frequency hearing adaptations. Interestingly, our screen also showed that echolocating mammals exhibit an unusually high number of parallel substitutions in fast-twitch muscle fiber proteins. Both bats and dolphins produce an extremely rapid call rate when homing in on their prey, which was shown in bats to be powered by specialized superfast muscles. We show that these genes with parallel substitutions (Casq1, Atp2a1, Myh2, Myl1) are expressed in the superfast sound-producing muscle of bats. Furthermore, we found that the calcium storage protein calsequestrin 1 of bats and dolphins functionally converged in its ability to form calcium-sequestering polymers at lower calcium concentrations, which may contribute to rapid calcium transients required for superfast muscle physiology. The proteins that our genomic screen detected could be involved in the convergent evolution of vocalization in echolocating mammals by potentially contributing to both rapid Ca2+ transients and increased shortening velocities in superfast muscles.AbbreviationsSRsarcoplasmic reticulum


2011 ◽  
Vol 301 (3) ◽  
pp. R783-R790 ◽  
Author(s):  
Bradley J. Behnke ◽  
Robert B. Armstrong ◽  
Michael D. Delp

The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (GastRed and GastWhite, respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α1-phenylephrine or α2-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and GastRed and an 8.7-fold increase in flow to the GastWhite. In isolated arterioles, α2-mediated vasoconstriction was greatest in GastWhite (∼50%) and less in GastRed (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α1-mediated vasoconstriction in the GastWhite and GastRed vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α1- and α2-adrenoreceptors on the vascular smooth muscle.


2014 ◽  
Vol 125 ◽  
pp. S208-S209
Author(s):  
B. Sanchez ◽  
J. Li ◽  
R. Bragos ◽  
S. Rutkove

2018 ◽  
Vol Volume 13 ◽  
pp. 125-131 ◽  
Author(s):  
Mariko Matsubara ◽  
Haruka Tohara ◽  
Koji Hara ◽  
Hiromichi Shinozaki ◽  
Yasuhiro Yamazaki ◽  
...  

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1988 ◽  
Vol 254 (5) ◽  
pp. C651-C656 ◽  
Author(s):  
P. Babij ◽  
F. W. Booth

Specific complementary DNA (cDNA) hybridization probes were used to estimate the levels of alpha-actin and cytochrome c mRNAs and also 18S rRNA in three models of skeletal muscle atrophy. After 7 days of hindlimb suspension, or immobilization, or denervation, protein content decreased 26-32% in all muscles studied except suspended fast-twitch muscle, which lost only half as much protein. alpha-Actin mRNA content decreased 51-66% and cytochrome c mRNA content decreased 42-61% in slow- and fast-twitch muscles in all three models of atrophy. However, total RNA content did not show similar directional changes; RNA content decreased 27-44% in suspended and immobilized muscle but was unchanged in denervated fast-twitch muscle. The results were interpreted to suggest that loss of weight-bearing function of skeletal muscle is a major factor affecting the levels of alpha-actin and cytochrome c mRNAs during muscle atrophy.


2004 ◽  
Vol 11 (1) ◽  
pp. 17-22 ◽  
Author(s):  
M Venojärvi ◽  
M Kvist ◽  
M Atalay ◽  
L Jozsa ◽  
H Kalimo

1979 ◽  
Vol 36 (1) ◽  
pp. 137-154
Author(s):  
D.E. Ashhurst ◽  
G. Vrbova

The anterior latissimus dorsi (ALD) muscle of chickens is a slow tonic muscle, while the posterior latissimus dorsi (PLD) is a fast twitch muscle. These muscles on opposite sides of a 3-week-old chick were removed, minced and replaced in the site of the other muscle and left to regenerate. The regenerating muscles were examined at various periods from 4 days onwards and their contractile properties were found to resemble those typical of the muscle they replaced and not the original muscle. The regenerating muscles from 8 days onwards displayed the morphological features of the control muscles in the contralateral site. By 14 days, differentiation was almost complete and neuromuscular junctions were seen. It is suggested that the physiological and morphological characteristics of a muscle are determined by its position and possibly also by its innervation.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Willemijn Groenendaal ◽  
Jeroen Jeneson ◽  
Robert Wiseman ◽  
Klaas Nicolay ◽  
Peter Hilbers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document