scholarly journals DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species

2019 ◽  
Vol 5 (10) ◽  
pp. eaaw1644 ◽  
Author(s):  
M. Laporte ◽  
J. Le Luyer ◽  
C. Rougeux ◽  
A.-M. Dion-Côté ◽  
M. Krick ◽  
...  

The genomic shock hypothesis stipulates that the stress associated with divergent genome admixture can cause transposable element (TE) derepression, which could act as a postzygotic isolation mechanism. TEs affect gene structure, expression patterns, and chromosome organization and may have deleterious consequences when released. For these reasons, they are silenced by heterochromatin formation, which includes DNA methylation. Here, we show that a significant proportion of TEs are differentially methylated between the “dwarf” (limnetic) and the “normal” (benthic) whitefish, two nascent species that diverged some 15,000 generations ago within the Coregonus clupeaformis species complex. Moreover, TEs are overrepresented among loci that were demethylated in hybrids, indicative of their transcriptional derepression. These results are consistent with earlier studies in this system that revealed TE transcriptional derepression causes abnormal embryonic development and death of hybrids. Hence, this supports a role of DNA methylation reprogramming and TE derepression in postzygotic isolation of nascent animal species.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3805-3805
Author(s):  
Jorge Contreras ◽  
Jayanth Kumar Palanichamy ◽  
Tiffany Tran ◽  
Dinesh S. Rao

Abstract Diffuse large B cell lymphoma (DLBCL) is one of the most common Non-Hodgkin lymphomas among adults. It is a heterogeneous disease characterized by multiple mutations and translocations. Gene expression profiling studies have revealed several characteristic gene expression patterns, with two main patterns emerging, namely Germinal Center(GC) type, and Activated B Cell (ABC) type. ABC-type DLBCL shows gene expression patterns that resemble activated B-cells, with increased expression of anti-apoptotic, and pro-proliferative genes. Critically, upregulation of the NF-κB the pathway is a hallmark of ABC-type DLBCL and has been shown to be necessary for survival, and is caused by several different mutations at different levels within the pathway. Recent work has revealed the critical importance of a new class of small RNA molecules, namely microRNAs, in gene regulation. Of these, microRNA-146a (miR-146a) was discovered as an NF-κB induced microRNA that plays a role as a negative feedback regulator of this pathway by targeting adaptor proteins. To further characterize miR-146a, mice deficient for this miRNA were created, and were found to develop lymphadenopathy, splenomegaly, and myeloid proliferation. As expected, immune cells in these mice have an upregulated NF-κB pathway and many of the phenotypes can be ameliorated by inhibition of the NF-κB pathway. Importantly, a significant proportion of the animals develop B-cell lymphoma at older ages. In this study, we examined the role of miR-146a in the development of malignancy in B-cells. To accelerate the role of miR-146a in tumor formation we overlaid the miR-146a deficient allele onto the Eμ-Myc like mouse model. Eμ-Myc mice develop tumors on average by 14weeks of age. The transgenic status of animals was verified by genotyping, RNA and protein expression analyses. miR-146a sufficient and deficient animals on the Eμ-Myc background were followed for tumor latency by peripheral blood analysis and careful physical examination. Based on approved humane criteria for animal discomfort, animals were sacrificed and hematopoietic tissue was harvested for analysis. Mice deficient for miR-146a had a statistically reduced survival in comparison with miR-146a sufficient animals with a p-value of .0098 (Kaplan Meir survival analysis). Complete Blood Count of animals at time of death revealed an increase leukemia presentation in the miR-146a deficient background. FACS analysis of tumor tissue from both groups revealed an increase in the number of IgM positive tumors in the miR-146a-deficient background indicating skewing towards more mature B cell neoplasms when miR-146a is lacking. Lineage analysis of tumors verified them to be of B cell origin although a subset of miR-146a sufficient tumors had higher numbers of infiltrating myeloid cells compared to deficient animals. Furthermore, histologic analysis of hematopoietic organs showed that while infiltration remained similar in kidneys and liver, more spleens in the miR-146a deficient background tended to be less involved. Our extensive histopathologic and immunophenotypic analyses indicate that miR-146a deficiency drives a more aggressive malignant phenotype in the B-cell lineage. In keeping with this, our profiling studies of human DLBCL suggest that a subset of DLBCL show decreased expression of miR-146a. We are currently examining the status of NF-κB in the murine tumors and using high throughput sequencing approaches to delineate gene expression differences between miR-146a sufficient and deficient tumors. We anticipate the discovery of novel gene targets of miR-146a and expect that these studies will lead to improved diagnostic and therapeutic options for patients of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Melisa Leone ◽  
Diego Zavallo ◽  
Andrea Venturuzzi ◽  
Sebastián Asurmendi

SummarySmall RNAs (sRNA) are important molecules for gene regulation in plants and play an essential role in plant-pathogen interactions. Researchers have evaluated the relationship between viral infections as well as the endogenous accumulation of sRNAs and the transcriptional changes associated with the production of symptoms, little is known about a possible direct role of epigenetics, mediated by 24-nt sRNAs, in the induction of these symptoms.With the use of different RNA directed DNA methylation pathway mutants and triple demethylase mutants, here we demonstrate that the disruption of RdDM pathway during viral infection produced alterations in the plant transcriptomic changes (because of the infection) and in symptomatology.This study represents the initial step in exposing that DNA methylation directed by endogenous sRNAs has an important role, uncoupled to defense, in the production of symptoms associated with plant-virus interactions.Significance statementThe crop yield losses induced by phytoviruses are mainly associated with the symptoms of the disease. DNA modifications as methylation, can modulate the information coded by the sequence, process named epigenetics. Viral infection can change the expression patterns of different genes linked to defenses and symptoms. This work represents the initial step to expose the role of epigenetic process, in the production of symptoms associated with plants-virus interactions.


2002 ◽  
Vol 169 (8) ◽  
pp. 4253-4261 ◽  
Author(s):  
Simeon Santourlidis ◽  
Hans-Ingo Trompeter ◽  
Sandra Weinhold ◽  
Britta Eisermann ◽  
Klaus L. Meyer ◽  
...  

2005 ◽  
Vol 70 (11) ◽  
pp. 1187-1198 ◽  
Author(s):  
M. S. Klenov ◽  
V. A. Gvozdev

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 131-142
Author(s):  
Laura A Johnston ◽  
Bruce D Ostrow ◽  
Christine Jasoni ◽  
Karen Blochlinger

Abstract The cut locus (ct) codes for a homeodomain protein (Cut) and controls the identity of a subset of cells in the peripheral nervous system in Drosophila. During a screen to identify ct-interacting genes, we observed that flies containing a hypomorphic ct mutation and a heterozygous deletion of the Antennapedia complex exhibit a transformation of mouthparts into leg and antennal structures similar to that seen in homozygous proboscipedia (pb) mutants. The same phenotype is produced with all heterozygous pb alleles tested and is fully penetrant in two different ct mutant backgrounds. We show that this phenotype is accompanied by pronounced changes in the expression patterns of both ct and pb in labial discs. Furthermore, a significant proportion of ct mutant flies that are heterozygous for certain Antennapedia (Antp) alleles have thoracic defects that mimic loss-of-function Antp phenotypes, and ectopic expression of Cut in antennal discs results in ectopic Antp expression and a dominant Antp-like phenotype. Our results implicate ct in the regulation of expression and/or function of two homeotic genes and document a new role of ct in the control of segmental identity.


2018 ◽  
Vol 11 ◽  
pp. 251686571881111 ◽  
Author(s):  
Maud de Dieuleveult ◽  
Benoit Miotto

DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Jingwen Wang ◽  
Junjiu Huang ◽  
Guang Shi

AbstractTransposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.


2004 ◽  
Vol 32 (6) ◽  
pp. 913-915 ◽  
Author(s):  
G. Strathdee ◽  
A. Sim ◽  
R. Brown

The role of DNA methylation in the control of mammalian gene expression has been the subject of intensive research in recent years, partly due to the critical role of CpG island methylation in the inactivation of tumour suppressor genes during the development of cancer. However, this research has also helped elucidate the role that DNA methylation plays in normal cells. At present, it is also clear that DNA methylation forms an important part of the normal cell-regulatory processes that govern gene transcription. Methylation, targeted at CpG islands, is an important part of the mechanisms that govern X-chromosome inactivation; it is also essential for the maintenance of imprinted genes and, at least in some cases, is critical in determining the cell-type-specific expression patterns of genes. Study of these examples will be important in identifying the mechanisms that control targeting of DNA methylation and how these processes are disrupted during disease pathogenesis.


2015 ◽  
Vol 35 (3) ◽  
pp. 1178-1187 ◽  
Author(s):  
Junqiang Zhang ◽  
Ying Wang ◽  
Xiaoguang Liu ◽  
Shenglin Jiang ◽  
Chun Zhao ◽  
...  

Background/Aims: MicroRNA-29b (miR29b) has been previously identified in early mouse embryos through miRNA microarray analysis. Recent research has indicated that miR29b participates in DNA methylation by regulating DNA methyltransferase 3a/3b (Dnmt3a/3b) expression. However, the expression pattern and biological function of miR29b in mouse preimplantation embryonic development remain unknown. Methods: In this study, we examined the expression patterns of miR29b and Dnmt3a/3b in mouse early embryos at different developmental stages. Subsequently, expression and localization of DNMT3A/3B protein was analyzed in mouse early embryos by immunofluorescence staining. The biological function of miR29b in mouse early embryos was analyzed by microinjection of commercially available miRNA-specific inhibitors and mimics. Results: Our data showed that Dnmt3a/3b mRNA expression is negatively regulated by miR29b in mouse early embryos. Immunofluorescence analysis revealed that DNMT3A/3B protein expression is predominantly localized within the nucleoplasm of embryos. Alterations to the activity of miR29b could change the DNA methylation levels in mouse preimplantation embryos and lead to a developmental blockade, from the morula to the blastocyst stage. Conclusion: These results indicated a role for the miR29b-Dnmt3a/3b-DNA methylation axis in mouse early embryonic development, and we provide evidence that miR29b is indispensable for mouse early embryonic development. This study contributes to a preliminary understanding of the role of miR29b during mouse embryonic development.


Sign in / Sign up

Export Citation Format

Share Document