scholarly journals Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer’s disease

2020 ◽  
Vol 6 (4) ◽  
pp. eaax6646 ◽  
Author(s):  
K. Xhima ◽  
K. Markham-Coultes ◽  
H. Nedev ◽  
S. Heinen ◽  
H. U. Saragovi ◽  
...  

The degeneration of cholinergic neurons is a prominent feature of Alzheimer’s disease (AD). In animal models of injury and aging, nerve growth factor (NGF) enhances cholinergic cell survival and function, contributing to improved memory. In the presence of AD pathology, however, NGF-related therapeutics have yet to fulfill their regenerative potential. We propose that stimulating the TrkA receptor, without p75NTR activation, is key for therapeutic efficacy. Supporting this hypothesis, the selective TrkA agonist D3 rescued neurotrophin signaling in TgCRND8 mice, whereas NGF, interacting with both TrkA and p75NTR, did not. D3, delivered intravenously and noninvasively to the basal forebrain using MRI-guided focused ultrasound (MRIgFUS)–mediated blood-brain barrier (BBB) permeability activated TrkA-related signaling cascades and enhanced cholinergic neurotransmission. Recent clinical trials support the safety and feasibility of MRIgFUS BBB modulation in AD patients. Neuroprotective agents targeting TrkA, combined with MRIgFUS BBB modulation, represent a promising strategy to counter neurodegeneration in AD.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Yan-Fang Xian ◽  
Chang Qu ◽  
Yue Liu ◽  
Siu-Po Ip ◽  
Qiu-Ju Yuan ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease characterized by progressive memory loss. Magnolol (MN), the main active ingredient of Magnolia officinalis, possesses anti-AD effects in several experimental models of AD. In this study, we aimed to explore whether MN could ameliorate the cognitive deficits in TgCRND8 transgenic mice and to elucidate its molecular mechanisms. Male TgCRND8 mice were orally administered with MN (20 and 40 mg/kg) daily for 4 consecutive months, followed by assessing the spatial learning and memory functions using the open-field, radial arm maze, and novel object recognition tests. The results demonstrated that MN (20 and 40 mg/kg) could markedly ameliorate the cognitive deficits in TgCRND8 mice. In addition, MN significantly increased the expression of postsynaptic density protein 93 (PSD93), PSD-95, synapsin-1, synaptotagmin-1, synaptophysin (SYN), and interleukin-10 (IL-10), while markedly reduced the protein levels of tumor necrosis factor alpha (TNF-α), IL-6, IL-1β, Aβ40, and Aβ42, and modulated the amyloid precursor protein (APP) processing and phosphorylation. Immunofluorescence showed that MN significantly suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the hippocampus and cerebral cortex of TgCRND8 mice. Mechanistic studies revealed that MN could significantly increase the ratios of p-GSK-3β (Ser9)/GSK-3β, p-Akt (Ser473)/Akt, and p-NF-κB p65/NF-κB p65. These findings indicate that MN exerted cognitive deficits improving effects via suppressing neuroinflammation, amyloid pathology, and synaptic dysfunction through regulating the PI3K/Akt/GSK-3β and NF-κB pathways, suggesting that MN is a promising naturally occurring polyphenol worthy of further developing into a therapeutic agent for AD treatment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengrong Zhang ◽  
Liting Zhong ◽  
Xiu Han ◽  
Guoyin Xiong ◽  
Di Xu ◽  
...  

One of the major challenges in treating Alzheimer's disease (AD) is its early diagnosis. Increasing data from clinical and animal research indicate that the retina may facilitate an early diagnosis of AD. However, a previous study on the 5xFAD (a fast AD model), showing retinal changes before those in the brain, has been questioned because of the involvement of the retinal degeneration allele Pde6brd1. Here, we tested in parallel, at 4 and 6 months of age, both the retinal and the brain structure and function in a 5xFAD mouse line that carries no mutation of rd1. In the three tested regions of the 5xFAD brain (hippocampus, visual cortex, and olfactory bulb), the Aβ plaques were more numerous than in wild-type (WT) littermates already at 4 months, but deterioration in the cognitive behavioral test and long-term potentiation (LTP) lagged behind, showing significant deterioration only at 6 months. Similarly in the retina, structural changes preceded functional decay. At 4 months, the retina was generally normal except for a thicker outer nuclear layer in the middle region than WT. At 6 months, the visual behavior (as seen by an optomotor test) was clearly impaired. While the full-field and pattern electroretinogram (ERG) responses were relatively normal, the light responses of the retinal ganglion cells (measured with multielectrode-array recording) were decreased. Structurally, the retina became abnormally thick with few more Aβ plaques and activated glia cells. In conclusion, the timeline of the degenerative processes in the retina and the brain is similar, supporting the use of non-invasive methods to test the retinal structure and function to reflect changes in the brain for early AD diagnosis.


2021 ◽  
Vol 18 (2) ◽  
pp. 482-493
Author(s):  
Madelaine Lynch ◽  
Stefan Heinen ◽  
Kelly Markham-Coultes ◽  
Meaghan O'Reilly ◽  
Paul Van Slyke ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Denglei Ma ◽  
Lihong Zhao ◽  
Li Zhang ◽  
Yali Li ◽  
Lan Zhang ◽  
...  

Alzheimer’s disease (AD) involves the degeneration of cholinergic neurons in the basal forebrain. Neural stem cell (NSC) transplantation has emerged as a promising therapeutic approach for treating AD. Icariin (ICA) is the main active component in Epimedium, a traditional Chinese herb. The purpose of the present study was to investigate the effects and mechanisms of ICA on the proliferation and differentiation of NSCs in the basal forebrain of a fimbria-fornix transection (FFT) rat model. In the present study, ICA promoted the survival, proliferation, and migration of NSCs in vitro. In FFT rats, ICA promoted the proliferation and differentiation of NSCs into neurons and increased the number of cholinergic neurons in the MS and VDB of the basal forebrain. These results suggest that combination therapy of ICA oral administration and NSC transplantation may provide a new potential and effective approach for AD therapy.


Sign in / Sign up

Export Citation Format

Share Document