scholarly journals Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement

2020 ◽  
Vol 6 (21) ◽  
pp. eaaz8239 ◽  
Author(s):  
Bo-Fu Wang ◽  
Quan Zhou ◽  
Chao Sun

Thermal turbulence is well known as a potent means to convey heat across space by a moving fluid. The existence of the boundary layers near the plates, however, bottlenecks its heat-exchange capability. Here, we conceptualize a mechanism of thermal vibrational turbulence that breaks through the boundary-layer limitation and achieves massive heat-transport enhancement. When horizontal vibration is applied to the convection cell, a strong shear is induced to the body of fluid near the conducting plates, which destabilizes thermal boundary layers, vigorously triggers the eruptions of thermal plumes, and leads to a heat-transport enhancement by up to 600%. We further reveal that such a vibration-induced shear can very efficiently disrupt the boundary layers. The present findings open a new avenue for research into heat transport and will also bring profound changes in many industrial applications where thermal flux through a fluid is involved and the mechanical vibration is usually inevitable.


Author(s):  
Ruslan M Kerimbekov ◽  
Anatoly I Ruban

Linear three-dimensional receptivity of boundary layers to distributed wall vibrations in the large Reynolds number limit ( Re →∞) is studied in this paper. The fluid motion is analysed by means of the multiscale asymptotic technique combined with the method of matched asymptotic expansions. The body surface is assumed to be perturbed by small-amplitude oscillations being tuned in resonance with the neutral Tollmien–Schlichting wave at a certain point on the wall. The characteristic length of the resonance region is found to be O( Re −3/16 ), which follows from the condition that the boundary-layer non-parallelism and the wave amplitude growth have the same order of magnitude. The amplitude equation is derived as a solvability condition for the inhomogeneous boundary-value problem. Investigating detuning effects, we consider perturbations in the form of a wave packet with a narrow O( Re −3/16 ) discrete or continuous spectrum concentrated near the resonant wavenumber and frequency. The boundary-layer laminarization based on neutralizing the oncoming Tollmien–Schlichting waves (or wave packets) is also discussed.



2019 ◽  
Vol 870 ◽  
pp. 519-542 ◽  
Author(s):  
Zi Li Lim ◽  
Kai Leong Chong ◽  
Guang-Yu Ding ◽  
Ke-Qing Xia

We present a numerical study of quasistatic magnetoconvection in a cubic Rayleigh–Bénard (RB) convection cell subjected to a vertical external magnetic field. For moderate values of the Hartmann number $Ha$ (characterising the strength of the stabilising Lorentz force), we find an enhancement of heat transport (as characterised by the Nusselt number $Nu$). Furthermore, a maximum heat transport enhancement is observed at certain optimal $Ha_{opt}$. The enhanced heat transport may be understood as a result of the increased coherence of the thermal plumes, which are elementary heat carriers of the system. To our knowledge this is the first time that a heat transfer enhancement by the stabilising Lorentz force in quasistatic magnetoconvection has been observed. We further found that the optimal enhancement may be understood in terms of the crossing of the thermal and the momentum boundary layers (BL) and the fact that temperature fluctuations are maximum near the position where the BLs cross. These findings demonstrate that the heat transport enhancement phenomenon in the quasistatic magnetoconvection system belongs to the same universality class of stabilising–destabilising (S–D) turbulent flows as the systems of confined Rayleigh–Bénard (CRB), rotating Rayleigh–Bénard (RRB) and double-diffusive convection (DDC). This is further supported by the findings that the heat transport, boundary layer ratio and temperature fluctuations in magnetoconvection at the boundary layer crossing point are similar to the other three cases. A second type of boundary layer crossing is also observed in this work. In the limit of $Re\gg Ha$, the (traditionally defined) viscous boundary $\unicode[STIX]{x1D6FF}_{v}$ is found to follow a Prandtl–Blasius-type scaling with the Reynolds number $Re$ and is independent of $Ha$. In the other limit of $Re\ll Ha$, $\unicode[STIX]{x1D6FF}_{v}$ exhibits an approximate ${\sim}Ha^{-1}$ dependence, which has been predicted for a Hartmann boundary layer. Assuming the inertial term in the momentum equation is balanced by both the viscous and Lorentz terms, we derived an expression $\unicode[STIX]{x1D6FF}_{v}=H/\sqrt{c_{1}Re^{0.72}+c_{2}Ha^{2}}$ (where $H$ is the height of the cell) for all values of $Re$ and $Ha$, which fits the obtained viscous boundary layer well.



1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.



New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.



2021 ◽  
Vol 11 (15) ◽  
pp. 7126
Author(s):  
Wei Yang ◽  
Pei Hu

Fiber additive will induce the rheological behavior of suspension, resulting in variation in velocity profile and fiber orientation especially for the non-dilute case. Based on the fluid-solid coupling dynamics simulation, it shows that the fiber orientation aligns along the streamline more and more quickly in the central turbulent region as the fiber concentration increases, especially contract ratio Cx > 4. However, fibers tend to maintain the original uniform orientation and are rarely affected by the contract ratio in the boundary layer. The fibers orientation in the near semi-dilute phase is lower than that in the dilute phase near the outlet, which may be the result of the hydrodynamic contact lubrication between fibers. The orientation distribution and concentration of the fibers change the viscous flow mechanism of the suspension microscopically, which makes a velocity profile vary with the phase concentration. The velocity profile of the approaching semi-dilute phase sublayer is higher than that of the dilute and semi-dilute phases on the central streamline and in the viscous bottom layer, showing weak drag reduction while the situation is opposite on the logarithmic layer of the boundary layer. The relevant research can provide a process strategy for fiber orientation optimization and rheological control in the industrial applications of suspension.



Author(s):  
Xiuzhen Li ◽  
Lin Wang ◽  
Rong Feng ◽  
Zhanwei Wang ◽  
Shijie Liu ◽  
...  


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 567
Author(s):  
Xudong Jiang ◽  
Yihao Tang ◽  
Zhaohui Liu ◽  
Venkat Raman

When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.



2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.



1960 ◽  
Vol 9 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Iam Proudman

The purpose of this note is to describe a particular class of steady fluid flows, for which the techniques of classical hydrodynamics and boundary-layer theory determine uniquely the asymptotic flow for large Reynolds number for each of a continuously varied set of boundary conditions. The flows involve viscous layers in the interior of the flow domain, as well as boundary layers, and the investigation is unusual in that the position and structure of all the viscous layers are determined uniquely. The note is intended to be an illustration of the principles that lead to this determination, not a source of information of practical value.The flows take place in a two-dimensional channel with porous walls through which fluid is uniformly injected or extracted. When fluid is extracted through both walls there are boundary layers on both walls and the flow outside these layers is irrotational. When fluid is extracted through one wall and injected through the other, there is a boundary layer only on the former wall and the inviscid rotational flow outside this layer satisfies the no-slip condition on the other wall. When fluid is injected through both walls there are no boundary layers, but there is a viscous layer in the interior of the channel, across which the second derivative of the tangential velocity is discontinous, and the position of this layer is determined by the requirement that the inviscid rotational flows on either side of it must satisfy the no-slip conditions on the walls.



2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.



Sign in / Sign up

Export Citation Format

Share Document