scholarly journals Water-ion permselectivity of narrow-diameter carbon nanotubes

2020 ◽  
Vol 6 (38) ◽  
pp. eaba9966 ◽  
Author(s):  
Yuhao Li ◽  
Zhongwu Li ◽  
Fikret Aydin ◽  
Jana Quan ◽  
Xi Chen ◽  
...  

Carbon nanotube (CNT) pores, which mimic the structure of the aquaporin channels, support extremely high water transport rates that make them strong candidates for building artificial water channels and high-performance membranes. Here, we measure water and ion permeation through 0.8-nm-diameter CNT porins (CNTPs)—short CNT segments embedded in lipid membranes—under optimized experimental conditions. Measured activation energy of water transport through the CNTPs agrees with the barrier values typical for single-file water transport. Well-tempered metadynamics simulations of water transport in CNTPs also report similar activation energy values and provide molecular-scale details of the mechanism for water entry into these channels. CNTPs strongly reject chloride ions and show water-salt permselectivity values comparable to those of commercial desalination membranes.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. F. Lopez ◽  
H. Mendoza

The effect of temperature on nano-CeO2 particle coarsening is investigated. The nanoceria powders were synthesized using the microemulsion method and then exposed to temperatures in the range of 373–1273 K. It was found that the nanoparticles exhibited a strong tendency to form agglomerates and through the application of ultrasound these agglomerates could be broken into smaller sizes. In addition average nanoparticle sizes were determined by powder X-ray diffraction (XRD). The outcome of this work indicates that the initial nano-CeO2 powders are amorphous in nature. Annealing promotes CeO2 crystallization and a slight shift in the (111) XRD intensity peaks corresponding to CeO2. Moreover, at temperatures below 773 K, grain growth in nano-CeO2 particles is rather slow. Apparently, mass transport through diffusional processes is not likely to occur as indicated by an estimated activation energy of 20 kJ/mol. At temperatures above 873 K, the measured activation energy shifted to 105 kJ/mol suggesting a possible transition to Ostwald-Ripening type mass transport mechanisms.


1990 ◽  
Vol 192 ◽  
Author(s):  
M.J.M. Pruppers ◽  
K.M.H. Maessen ◽  
F.H.P.M. Habraken ◽  
J. Bezemer ◽  
W.F. Van Der Weg

ABSTRACTPhosphorus, boron and compensation doped hydrogenated amorphous silicon films were deposited in a glow discharge at different substrate temperatures in the range 50–330°C. Gas phase doping levels were 1%. At the lower temperatures the hydrogen concentration in the B doped and compensated doped films is larger than in the P and undoped films. For higher deposition temperatures the H concentration of the B doped films appeared to be smaller than in the other materials. The difference in hydrogen content of the doped and undoped material, deposited at various temperatures, is considered as a function of the measured activation energy for conduction in these films. This difference varies in much the same way with the activation energy as the hydrogen content in films deposited at one substrate temperature, but with varying gas phase dopant levels. This represents strong evidence that, apart from the deposition temperature, the hydrogen concentration in glow discharge a-Si:H is determined by the position of the Fermi level.


2000 ◽  
Vol 5 (S1) ◽  
pp. 273-279 ◽  
Author(s):  
D.D. Koleske ◽  
A.E. Wickenden ◽  
R.L. Henry

GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1×1016 cm−2 s−1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1×1014 cm−2 s−1 at an NH3 density of 1×1019 cm−3. Further increases of the NH3 density above 1×1019 cm−3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji-Hyun Hur

AbstractIt is well known that collective migrations of oxygen vacancies in oxide is the key principle of resistance change in oxide-based resistive memory (OxRAM). The practical usefulness of OxRAM mainly arises from the fact that these oxygen vacancy migrations take place at relatively low operating voltages. The activation energy of oxygen vacancy migration, which can be inferred from the operational voltage of an OxRAM, is much smaller compared to the experimentally measured activation energy of oxygen, and the underlying mechanism of the discrepancy has not been highlighted yet. We ask this fundamental question in this paper for tantalum oxide which is one of the most commonly employed oxides in OxRAMs and try the theoretical answer based on the first-principles calculations. From the results, it is proven that the exceptionally large mobility of oxygen vacancy expected by the switching model can be well explained by the exceptionally low activation barrier of positively charged oxygen vacancy within the two-dimensional substructure.


1997 ◽  
Vol 473 ◽  
Author(s):  
Marc J.C. Van Den Homberg ◽  
P.F.A. Alkemade ◽  
A. H. Verbruggen ◽  
A. G. Dirks ◽  
E. Ochs ◽  
...  

ABSTRACTThe relation between electromigration and microstructure for three types of Al lines with different microstructures has been studied. The lines were made by recrystallization of Al in a SiO2 groove pattern. They were either truly bamboo with grains of on average 3 μm long or distorted (i.e. with dislocations) single-crystals. In addition, conventional, polycrystalline Al lines with grains of on average 230 nm were made. The lines were lifetime-tested (200 °C,j=2, 5 and 8 MA/cm2) and subjected to l/f noise measurements (from 200 to 500 K).The bamboo and single-crystalline Al lines showed the same, although weak, 1/ƒ noise. This observation demonstrates that other mechanisms than thermal motion of atoms at grain boundaries can cause noise. It is suggested that dislocations are the sources for noise in our samples. The measured activation energy (0.8 eV) is in agreement with the activation energy for pipe diffusion along dislocation lines.The lifetime-tests showed significantly higher times to failure for the single-crystalline and bamboo lines as compared to polycrystalline lines. Preliminary results indicate slightly higher lifetimes for the bamboo than for the single-crystalline lines. It is concluded that interface diffusion is the main mechanism for electromigration in truly bamboo or single-crystalline lines. Our measurements demonstrated that dislocations are important in the formation of l/ƒ noise and interfaces in the formation of electromigration damage.


2016 ◽  
Vol 711 ◽  
pp. 137-142 ◽  
Author(s):  
Daniel Dobias ◽  
Radka Pernicova ◽  
Tomas Mandlik

Properties of water transport and depth of chloride penetration into the Ultra High Performance Concrete (hereafter as UHPC) with mild steel fibres are presented in this paper. The main aim of this experimental part of work is to obtain sufficiently accurate input data for the evaluation of long-term durability of architectural concrete which are connected with water transport and its accompanying effects such as biological degradation or chloride transport. The article also presents the one dimensional chloride diffusion into UHPC which can be potentially dangerous particularly for durability of reinforced concrete structures. For the simulation of aggressive environments the concrete samples were exposed to chloride solution for one year. Measured data were examined in relation to the depth of penetration of chloride ions into the UHPC structure. Comparative measurements with normal strength concrete (hereafter as NSC) are done as well. An about five-time lower value of moisture absorption of UHPC compared to the NSC was observed and further the curve of chloride penetration into the structure is significantly steeper for UHPC samples.


2000 ◽  
Vol 47 (3) ◽  
pp. 661-673 ◽  
Author(s):  
T Janas ◽  
K Nowotarski ◽  
W I Gruszecki ◽  
T Janas

The Langmuir monolayer technique and voltammetric analysis were used to investigate the properties of model lipid membranes prepared from dioleoylphosphatidylcholine (DOPC), hexadecaprenol (C80), and their mixtures. Surface pressure-molecular area isotherms, current-voltage characteristics, and membrane conductance-temperature were measured. Molecular area isobars, specific molecular areas, excess free energy of mixing, collapse pressure and collapse area were determined for lipid monolayers. Membrane conductance, activation energy of ion migration across the membrane, and membrane permeability coefficient for chloride ions were determined for lipid bilayers. Hexadecaprenol decreases the activation energy and increases membrane conductance and membrane permeability coefficient. The results of monolayer and bilayer investigations show that some electrical, transport and packing properties of lipid membranes change under the influence of hexadecaprenol. The results indicate that hexadecaprenol modulates the molecular organisation of the membrane and that the specific molecular area of polyprenol molecules depends on the relative concentration of polyprenols in membranes. We suggest that hexadecaprenol modifies lipid membranes by the formation of fluid microdomains. The results also indicate that electrical transmembrane potential can accelerate the formation of pores in lipid bilayers modified by long chain polyprenols.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Zahra Niavarani ◽  
Daniel Breite ◽  
Andrea Prager ◽  
Bernd Abel ◽  
Agnes Schulze

This work demonstrates the enhancement of the adsorption properties of polyethersulfone (PES) microfiltration membranes for 17β-estradiol (E2) from water. This compound represents a highly potent endocrine-disrupting chemical (EDC). The PES membranes were modified with a hydrophilic coating functionalized by amide groups. The modification was performed by the interfacial reaction between hexamethylenediamine (HMD) or piperazine (PIP) as the amine monomer and trimesoyl chloride (TMC) or adipoyl chloride (ADC) as the acid monomer on the surface of the membrane using electron beam irradiation. The modified membranes and the untreated PES membrane were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water permeance measurements, water contact angle measurements, and adsorption experiments. Furthermore, the effects of simultaneous changes in four modification parameters: amine monomer types (HMD or PIP), acid monomer types (TMC or ADC), irradiation dosage (150 or 200 kGy), and the addition of toluene as a swelling agent, on the E2 adsorption capacity were investigated. The results showed that the adsorption capacities of modified PES membranes toward E2 are >60%, while the unmodified PES membrane had an adsorption capacity up to 30% for E2 under similar experimental conditions, i.e., an enhancement of a factor of 2. Next to the superior adsorption properties, the modified PES membranes maintain high water permeability and no pore blockage was observed. The highlighted results pave the way to develop efficient low-cost, stable, and high-performance adsorber membranes.


1997 ◽  
Vol 472 ◽  
Author(s):  
Marc J.C. Van Den Homberg ◽  
P.F.A. Alkemade ◽  
A.H. Verbruggen ◽  
A.G. Dirks ◽  
E. Ochs ◽  
...  

ABSTRACTThe relation between electromigration and microstracture for three types of Al lines with different microstructures has been studied. The lines were made by recrystallization of Al in a SiO2 groove pattern. They were either truly bamboo with grains of on average 3 μm long or distorted (i.e. with dislocations) single-crystals. In addition, conventional, polycrystalline Al lines with grains of on average 230 nm were made. The lines were lifetime-tested (200 °C,j=2, 5 and 8 MA/cm2) and subjected to 1/f noise measurements (from 200 to 500 K).The bamboo and single-crystalline Al lines showed the same, although weak, 1/f noise. This observation demonstrates that other mechanisms than thermal motion of atoms at grain boundaries can cause noise. It is suggested that dislocations are the sources for noise in our samples. The measured activation energy (0.8 eV) is in agreement with the activation energy for pipe diffusion along dislocation lines.The lifetime-tests showed significantly higher times to failure for the single-crystalline and bamboo lines as compared to polycrystalline lines. Preliminary results indicate slightly higher lifetimes for the bamboo than for the single-crystalline lines. It is concluded that interface diffusion is the main mechanism for electromigration in truly bamboo or single-crystalline lines. Our measurements demonstrated that dislocations are important in the formation of 1/f noise and interfaces in the formation of electromigration damage.


1960 ◽  
Vol 13 (2) ◽  
pp. 347 ◽  
Author(s):  
TH Blewitt ◽  
RR Coltman ◽  
CE Klabunde

Activation energies for the annealing of copper and aluminium following reactor bombardment near 4 OK have been measured in the range from 10 to 40 OK. Both the change in slope method and the isothermal technique method were utilized with the assumption that a constant activation energy existed. Computations of the number of jumps involved from the measured activation energy result in an impossibly small number. It is obvious that the method for determination of the activation energies is not applicable, probably because of the non-uniqueness of the activation energy.


Sign in / Sign up

Export Citation Format

Share Document