scholarly journals MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program

2020 ◽  
Vol 7 (1) ◽  
pp. eabb6075
Author(s):  
Yi Wang ◽  
Lei Zhang ◽  
Guo-Rao Wu ◽  
Qing Zhou ◽  
Huihui Yue ◽  
...  

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis–associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)–induced PF are characterized by the altered methyl-CpG–binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF. Mbd2 deficiency significantly attenuated transforming growth factor–β1 (TGF-β1) production and reduced M2 macrophage accumulation in the lung following BLM induction. Mechanistically, Mbd2 selectively bound to the Ship promoter in macrophages, by which it repressed Ship expression and enhanced PI3K/Akt signaling to promote the macrophage M2 program. Therefore, intratracheal administration of liposomes loaded with Mbd2 siRNA protected mice from BLM-induced lung injuries and fibrosis. Together, our data support the possibility that MBD2 could be a viable target against PF in clinical settings.

2001 ◽  
Vol 281 (5) ◽  
pp. L1180-L1188 ◽  
Author(s):  
William H. Chung ◽  
Brian M. Bennett ◽  
William J. Racz ◽  
James F. Brien ◽  
Thomas E. Massey

Amiodarone (AM) is an antidysrhythmic agent with a propensity to cause pulmonary toxicity, including potentially fatal fibrosis. In the present study, the potential roles of c-Jun and transforming growth factor (TGF)-β1 in AM-induced inflammation and fibrogenesis were examined after intratracheal administration of AM (1.83 μmol/day on days 0 and 2) or an equivalent volume (0.4 ml) of distilled water to male Fischer 344 rats. Northern and immunoblot analyses demonstrated that lung TGF-β1 (mRNA and protein) expression was increased 1.5- to 1.8-fold relative to control during the early inflammation period and 1 day, 1 wk, and 2 wk post-AM treatment. Lung c-Jun protein expression was increased concomitantly with evidence of AM-induced fibrosis; at 5 wk post-AM treatment, c-Jun protein was increased 3.3-fold relative to control. The results indicate a role for induction of c- jun and TGF-β1 expression in the development of AM-induced pulmonary fibrosis in the Fischer 344 rat and provide potential targets for therapeutic intervention.


2013 ◽  
Vol 288 (38) ◽  
pp. 27159-27171 ◽  
Author(s):  
Meenakshi Maitra ◽  
Moushumi Dey ◽  
Wen-Cheng Yuan ◽  
Peter W. Nathanielsz ◽  
Christine Kim Garcia

Missense mutations of surfactant proteins are recognized as important causes of inherited lung fibrosis. Here, we study rare and common surfactant protein (SP)-A1 and SP-C variants, either discovered in our familial pulmonary fibrosis cohort or described by others. We show that expression of two SP-A1 (R219W and R242*) and three SP-C (I73T, M71V, and L188Q) variant proteins lead to the secretion of the profibrotic latent transforming growth factor (TGF)-β1 in lung epithelial cell lines. The secreted TGF-β1 is capable of autocrine and paracrine signaling and is dependent upon expression of the latent TGF-β1 binding proteins. The dependence upon unfolded protein response (UPR) mediators for TGF-β1 induction differs for each variant. TGF-β1 secretion induced by the expression of the common SP-A1 R219W variant is nearly completely blocked by silencing the UPR transducers IRE-1α and ATF6. In contrast, the secretion of TGF-β1 induced by two rare SP-C mutant proteins (I73T and M71V), is largely unaffected by UPR silencing or by the addition of the small molecular chaperone 4-phenylbutyric acid, implicating a UPR-independent mechanism for these variants. Blocking TGF-β1 secretion reverses cell death of RLE-6TN cells expressing these SP-A1 and SP-C variants suggesting that anti-TGF-β therapeutics may be beneficial to this molecularly defined subgroup of pulmonary fibrosis patients.


2020 ◽  
Vol 56 (19) ◽  
pp. 2881-2884 ◽  
Author(s):  
Yanqiao Feng ◽  
Hui Su ◽  
Yunzhi Li ◽  
Chunxiang Luo ◽  
Huiying Xu ◽  
...  

The first proteolysis targeting chimeras for the intracellular elimination of transforming growth factor-β1 (TGF-β1), which contributes to various diseases, is described.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215962
Author(s):  
Seidai Sato ◽  
Sy Giin Chong ◽  
Chandak Upagupta ◽  
Toyoshi Yanagihara ◽  
Takuya Saito ◽  
...  

RationaleExtracellular vesicles (EVs) are small lipid vesicles, and EV-coupled microRNAs (miRNAs) are important modulators of biological processes. Fibrocytes are circulating bone marrow-derived cells that migrate into the injured lungs and contribute to fibrogenesis. The question of whether EV-coupled miRNAs derived from fibrocytes are able to regulate pulmonary fibrosis has not been addressed yet.MethodsPulmonary fibrosis was induced in rats by intratracheal administration of an adenoviral gene vector encoding active transforming growth factor-β1 (TGF-β1) or control vector. Primary fibrocytes and fibroblasts were cultured from rat lungs and were sorted by anti-CD45 magnetic beads. Human circulating fibrocytes and fibrocytes in bronchoalveolar lavage fluid (BALF) were isolated by fibronectin-coated dishes. Fibrocytes were cultured on different stiffness plates or decellularised lung scaffolds. We also determined the effects of extracellular matrix (ECM) and recombinant TGF-β1 on the cellular and EV-coupled miRNA expression of fibrocytes.ResultsThe EVs of fibrocytes derived from fibrotic lungs significantly upregulated the expression of col1a1 of fibroblasts. Culturing on rigid plates or fibrotic decellularised lung scaffolds increased miR-21-5 p expression compared with soft plates or normal lung scaffolds. Dissolved ECM collected from fibrotic lungs and recombinant TGF-β1 increased miR-21-5 p expression on fibrocytes, and these effects were attenuated on soft plates. Fibrocytes from BALF collected from fibrotic interstitial pneumonia patients showed higher miR-21-5 p expression than those from other patients.ConclusionsOur results indicate that ECM contributes to fibrogenesis through biomechanical and biochemical effects on miRNA expression in fibrocytes.


2021 ◽  
pp. 074823372198989
Author(s):  
Zhao-qiang Zhang ◽  
Hai-tao Tian ◽  
Hu Liu ◽  
Ruining Xie

Silicosis is an occupational fibrotic lung disease caused by inhaling large amounts of crystalline silica dust. Transforming growth factor-β1 (TGF-β1), which is secreted from macrophages, has an important role in the development of this disease. Macrophages can recognize and capture silicon dust, undergo M2 polarization, synthesize TGF-β1 precursors, and secrete them out of the cell where they are activated. Activated TGF-β1 induces cells from different sources, transforming them into myofibroblasts through autocrine and paracrine mechanisms, ultimately causing silicosis. These processes involve complex molecular events, which are not yet fully understood. This systematic summary may further elucidate the location and development of pulmonary fibrosis in the formation of silicosis. In this review, we discussed the proposed cellular and molecular mechanisms of production, secretion, activation of TGF-β1, as well as the mechanisms through which TGF-β1 induces cells from three different sources into myofibroblasts during the pathogenesis of silicosis. This study furthers the medical understanding of the pathogenesis and theoretical basis for diagnosing silicosis, thereby promoting silicosis prevention and treatment.


2019 ◽  
Vol 400 (12) ◽  
pp. 1617-1627
Author(s):  
Meizi Chen ◽  
Bing Wan ◽  
Suhua Zhu ◽  
Fang Zhang ◽  
Jiajia Jin ◽  
...  

Abstract Geranylgeranyl diphosphate synthase (GGPPS) is an enzyme that catalyzes the synthesis of geranylgeranyl pyrophosphate (GGPP). GGPPS is implicated in many disorders, but its role in idiopathic pulmonary fibrosis (IPF) remains unclear. This study aimed to investigate the role of GGPPS in IPF. We established bleomycin-induced lung injury in a lung-specific GGPPS-deficient mouse (GGPPS−/−) and detected GGPPS expression in lung tissues by Western blot and immunohistochemistry analysis. We found that GGPPS expression increased during lung injury and fibrosis in mice induced by bleomycin, and GGPPS deficiency augmented lung fibrosis. GGPPS deficiency activated lung fibroblast by facilitating transforming growth factor β1 while antagonizing bone morphogenetic protein 4 signaling. Notably, the supplementation of exogenous GGPP mitigated lung fibrosis in GGPPS−/− mice induced by bleomycin. In conclusion, our findings suggest that GGPPS provides protection against pulmonary fibrosis and that the restoration of protein geranylgeranylation may benefit statin-induced lung injury.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4491
Author(s):  
Hao Ruan ◽  
Jiaoyan Luan ◽  
Shaoyan Gao ◽  
Shuangling Li ◽  
Qiuyan Jiang ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix deposition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine causing fibrosis, promoting abnormal epithelial–mesenchymal communication and fibroblast-to-myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pulmonary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Atish Gheware ◽  
Dhwani Dholakia ◽  
Sadasivam Kannan ◽  
Lipsa Panda ◽  
Ritu Rani ◽  
...  

Abstract Background COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. Methods In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. Results Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-β1 (TGF-β1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-β1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. Conclusion Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


2016 ◽  
Vol 35 (12) ◽  
pp. 1312-1318 ◽  
Author(s):  
M Huang ◽  
D Lou ◽  
H-H Li ◽  
Q Cai ◽  
Y-P Wang ◽  
...  

Paraquat (PQ) exposure could cause pulmonary fibrosis. The aim of this study was to investigate the protective effect of pyrrolidine dithiocarbamate (PDTC) in an acute PQ poison model. One hundred and forty-four Sprague Dawley rats were equally divided into three experimental groups: control group, PQ group, and PQ + PDTC group. At days 1, 3, 7, 14, 28, and 56 of treatment, the serum levels of transforming growth factor β1 (TGF-β1), the levels of hydroxyproline, the protein expression of nuclear factor κB (NF-κB) pathway, and histopathological change in lung tissue were assessed. The survival rate of rats treated with PQ + PDTC was increased compared with that of rats treated only with PQ ( p < 0.05), and the occurrence of pathological changes was dramatically attenuated in the PQ + PDTC group. The serum levels of TGF-β1 and the hydroxyproline levels in the PQ group were significantly increased in a time-dependent manner compared with those in the control and PQ + PDTC groups on days 7, 14, 28, and 56 ( p < 0.05). Additionally, the protein levels of NF-κB proteins p65, inhibitor of κB (IκB) kinase (IKKβ, and IκB-α were significantly downregulated in the PQ + PDTC group as determined by array analysis. The present findings suggest that overexpression of TGF-β1 may play an important role in PQ-induced lung injury and that PDTC, a strong NF-κB inhibitor, can rescue PQ-induced pulmonary fibrosis by influencing the protein expression of NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document