scholarly journals Noncanonical function of an autophagy protein prevents spontaneous Alzheimer’s disease

2020 ◽  
Vol 6 (33) ◽  
pp. eabb9036
Author(s):  
Bradlee L. Heckmann ◽  
Brett J. W. Teubner ◽  
Emilio Boada-Romero ◽  
Bart Tummers ◽  
Clifford Guy ◽  
...  

Noncanonical functions of autophagy proteins have been implicated in neurodegenerative conditions, including Alzheimer’s disease (AD). The WD domain of the autophagy protein Atg16L is dispensable for canonical autophagy but required for its noncanonical functions. Two-year-old mice lacking this domain presented with robust β-amyloid (Aβ) pathology, tau hyperphosphorylation, reactive microgliosis, pervasive neurodegeneration, and severe behavioral and memory deficiencies, consistent with human disease. Mechanistically, we found this WD domain was required for the recycling of Aβ receptors in primary microglia. Pharmacologic suppression of neuroinflammation reversed established memory impairment and markers of disease pathology in this novel AD model. Therefore, loss of the Atg16L WD domain drives spontaneous AD in mice, and inhibition of neuroinflammation is a potential therapeutic approach for treating neurodegeneration and memory loss. A decline in expression of ATG16L in the brains of human patients with AD suggests the possibility that a similar mechanism may contribute in human disease.

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 377
Author(s):  
Dina Medina-Vera ◽  
Cristina Rosell-Valle ◽  
Antonio J. López-Gambero ◽  
Juan A. Navarro ◽  
Emma N. Zambrana-Infantes ◽  
...  

Alzheimer’s disease (AD) is the most common form of neurodegeneration and dementia. The endocannabinoid (ECB) system has been proposed as a novel therapeutic target to treat AD. The present study explores the expression of the ECB system, the ECB-related receptor GPR55, and cognitive functions (novel object recognition; NOR) in the 5xFAD (FAD: family Alzheimer’s disease) transgenic mouse model of AD. Experiments were performed on heterozygous (HTZ) and homozygous (HZ) 11 month old mice. Protein expression of ECB system components, neuroinflammation markers, and β-amyloid (Aβ) plaques were analyzed in the hippocampus. According to the NOR test, anxiety-like behavior and memory were altered in both HTZ and HZ 5xFAD mice. Furthermore, both animal groups displayed a reduction of cannabinoid (CB1) receptor expression in the hippocampus, which is related to memory dysfunction. This finding was associated with indirect markers of enhanced ECB production, resulting from the combination of impaired monoacylglycerol lipase (MAGL) degradation and increased diacylglycerol lipase (DAGL) levels, an effect observed in the HZ group. Regarding neuroinflammation, we observed increased levels of CB2 receptors in the HZ group that positively correlate with Aβ’s accumulation. Moreover, HZ 5xFAD mice also exhibited increased expression of the GPR55 receptor. These results highlight the importance of the ECB signaling for the AD pathogenesis development beyond Aβ deposition.


2007 ◽  
Vol 204 (6) ◽  
pp. 1273-1280 ◽  
Author(s):  
Kuen-Jer Tsai ◽  
Yueh-Chiao Tsai ◽  
Che-Kun James Shen

Most of the current clinical treatments for Alzheimer's disease (AD) are largely symptomatic and can have serious side effects. We have tested the feasibility of using the granulocyte colony-stimulating factor (G-CSF), which is known to mobilize hematopoietic stem cells (HSCs) from the bone marrow into the peripheral blood, as a therapeutic agent for AD. Subcutaneous administration of G-CSF into two different β-amyloid (Aβ)–induced AD mouse models substantially rescued their cognitive/memory functions. The rescue was accompanied by the accumulation of 5-bromo-2′deoxyuridine–positive HSCs, as well as local neurogenesis surrounding the Aβ aggregates. Furthermore, the level of acetylcholine in the brains of Tg2576 mice was considerably enhanced upon G-CSF treatment. We suggest that G-CSF, a drug already extensively used for treating chemotherapy-induced neutropenia, should be pursued as a novel, noninvasive therapeutic agent for the treatment of AD.


Author(s):  
Mohammad Mehdipour ◽  
Masoumeh Emamghoreishi ◽  
Majid Reza Farrokhi ◽  
Elahe Amirinezhadfard ◽  
Mojtaba Keshavarz

Purpose: Neuroinflammation was indicated in the pathophysiology of Alzheimer’s disease. Previous reports have also signified that spironolactone has anti-inflammatory effects. Therefore, the aim of this study was to assess the modulatory effects of spironolactone on neuroinflammation and memory loss in a rat model of Alzheimer’s disease. Methods: The β-amyloid protein fragment 25-35 (Aβ) was injected in the dorsal hippocampus (5μg/2.5μl each side) of male Sprague-Dawley rats for four consecutive days to induce memory impairment. Animals have intraperitoneally received spironolactone (10, 25, or 50 mg/kg, N=6/group) or vehicle for 14 days. The passive inhibitory avoidance and the novel recognition tests were used for memory evaluation. Neuroinflammation was assessed by measuring the level of Iba1 protein, a marker of microglial activation, using western immunoblotting. Results: Different doses of spironolactone showed no significant changes in latency times and discriminations ratios in passive inhibitory avoidance and novel recognition tests, respectively, as compared to vehicle. However, spironolactone-treated groups showed significantly lower Iba1 protein levels in comparison to the vehicle-treated group (p<0.01). Conclusion: Spironolactone had a modulatory effect on neuroinflammation through a repressive effect on microglial activation with no valuable effect on memory improvement in a rat model of Alzheimer’s disease. The findings of this study suggest that Ab-induced memory loss may not be directly linked to microglial activation. Spironolactone may be a potential candidate to be examined in other neuroinflammatory disorders.


2021 ◽  
Vol 14 (1) ◽  
pp. 33
Author(s):  
Marta Campora ◽  
Valeria Francesconi ◽  
Silvia Schenone ◽  
Bruno Tasso ◽  
Michele Tonelli

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2005 ◽  
Vol 171 (1) ◽  
pp. 87-98 ◽  
Author(s):  
W. Haung Yu ◽  
Ana Maria Cuervo ◽  
Asok Kumar ◽  
Corrinne M. Peterhoff ◽  
Stephen D. Schmidt ◽  
...  

Macroautophagy, which is a lysosomal pathway for the turnover of organelles and long-lived proteins, is a key determinant of cell survival and longevity. In this study, we show that neuronal macroautophagy is induced early in Alzheimer's disease (AD) and before β-amyloid (Aβ) deposits extracellularly in the presenilin (PS) 1/Aβ precursor protein (APP) mouse model of β-amyloidosis. Subsequently, autophagosomes and late autophagic vacuoles (AVs) accumulate markedly in dystrophic dendrites, implying an impaired maturation of AVs to lysosomes. Immunolabeling identifies AVs in the brain as a major reservoir of intracellular Aβ. Purified AVs contain APP and β-cleaved APP and are highly enriched in PS1, nicastrin, and PS-dependent γ-secretase activity. Inducing or inhibiting macroautophagy in neuronal and nonneuronal cells by modulating mammalian target of rapamycin kinase elicits parallel changes in AV proliferation and Aβ production. Our results, therefore, link β-amyloidogenic and cell survival pathways through macroautophagy, which is activated and is abnormal in AD.


The Analyst ◽  
2022 ◽  
Author(s):  
Kawin Khachornsakkul ◽  
Anongnat Tiangtrong ◽  
Araya Suwannasom ◽  
Wuttichai Sangkharoek ◽  
Opor Jamjumrus ◽  
...  

We report on the first development of a simple distance-based β-amyloid (Aβ) protein quantification using paper-based devices (dPADs) to screen for Alzheimer’s disease (AD) and to subsequently follow up on...


2021 ◽  
Vol 18 (1) ◽  
pp. 80-87
Author(s):  
Elaine W.L. Chan ◽  
Emilia T.Y. Yeo ◽  
Kelly W.L. Wong ◽  
Mun L. See ◽  
Ka Y. Wong ◽  
...  

Background: In Alzheimer’s disease, accumulation of beta amyloid (Aβ) triggers amyloidogenesis and hyperphosphorylation of tau protein leading to neuronal cell death. Piper sarmentosum Roxb. (PS) is a traditional medicinal herb used by Malay to treat rheumatism, headache and boost memory. It possesses various biological effects, such as anti-cholinergic, anti-inflammatory, anti-oxidant and anti-depressant-like effects. Objective: The present study aimed to investigate neuroprotective properties of PS against Aβ-induced neurotoxicity and to evaluate its potential mechanism of action. Methods: Neuroprotective effects of hexane (HXN), dichloromethane (DCM), ethyl acetate (EA) and methanol (MEOH) extracts from leaves (L) and roots (R) of PS against Aβ-induced neurotoxicity were investigated in SH-SY5Y human neuroblastoma cells. Cells were pre-treated with PS for 24 h followed by 24 h of induction with Aβ. The neuroprotective effects of PS were studied using cell viability and cellular reactive oxygen species (ROS) assays. The levels of extracellular Aβ and tau proteins phosphorylated at threonine 231 (pT231) were determined. Gene and protein expressions were assessed using qRT-PCR analyses and western blot analyses, respectively. Results: Hexane extracts of PS (LHXN and RHXN) protected SH-SY5Y cells against Aβ-induced neurotoxicity, and decreased levels of extracellular Aβ and phosphorylated tau (pT231). Although extracts of PS inhibited Aβ-induced ROS production, it was unlikely that neuroprotective effects were simply due to the anti-oxidant capacity of PS. Further, mechanistic study suggested that the neuroprotective effects of PS might be due to its capability to regulate amyloidogenesis through the downregulation of BACE and APP. Conclusion: These findings suggest that hexane extracts of PS confer neuroprotection against Aβ- induced neurotoxicity in SH-SY5Y cells by attenuating amyloidogenesis and tau hyperphosphorylation. Due to its neuroprotective properties, PS might be a potential therapeutic agent for Alzheimer’s disease.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2182 ◽  
Author(s):  
Luca Piemontese ◽  
Gabriele Vitucci ◽  
Marco Catto ◽  
Antonio Laghezza ◽  
Filippo Perna ◽  
...  

A few symptomatic drugs are currently available for Alzheimer’s Disease (AD) therapy, but these molecules are only able to temporary improve the cognitive capacity of the patients if administered in the first stages of the pathology. Recently, important advances have been achieved about the knowledge of this complex condition, which is now considered a multi-factorial disease. Researchers are, thus, more oriented toward the preparation of molecules being able to contemporaneously act on different pathological features. To date, the inhibition of acetylcholinesterase (AChE) and of β-amyloid (Aβ) aggregation as well as the antioxidant activity and the removal and/or redistribution of metal ions at the level of the nervous system are the most common investigated targets for the treatment of AD. Since many natural compounds show multiple biological properties, a series of secondary metabolites of plants or fungi with suitable structural characteristics have been selected and assayed in order to evaluate their potential role in the preparation of multi-target agents. Out of six compounds evaluated, 1 showed the best activity as an antioxidant (EC50 = 2.6 ± 0.2 μmol/µmol of DPPH) while compound 2 proved to be effective in the inhibition of AChE (IC50 = 6.86 ± 0.67 μM) and Aβ1–40 aggregation (IC50 = 74 ± 1 μM). Furthermore, compound 6 inhibited BChE (IC50 = 1.75 ± 0.59 μM) with a good selectivity toward AChE (IC50 = 86.0 ± 15.0 μM). Moreover, preliminary tests on metal chelation suggested a possible interaction between compounds 1, 3 and 4 and copper (II). Molecules with the best multi-target profiles will be used as starting hit compounds to appropriately address future studies of Structure-Activity Relationships (SARs).


Sign in / Sign up

Export Citation Format

Share Document