scholarly journals PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion

2020 ◽  
Vol 6 (47) ◽  
pp. eabd0276
Author(s):  
Kuai Yu ◽  
Huabin Tian ◽  
Hongyu Deng

The adaptor proteins, STING and MAVS, are components of critical pathogen-sensing pathways that induce innate immunity. Phosphorylation of either adaptor results in activation of the type I interferon pathway. How this phosphorylation is regulated and how it is manipulated by pathogens remain largely unknown. Here, we identified host protein phosphatase, Mg2+/Mn2+ dependent 1G (PPM1G) as a negative regulator of innate immune pathways and showed that this host system is hijacked by Kaposi’s sarcoma-associated herpesvirus (KSHV). Mechanistically, KSHV tegument protein ORF33 interacts with STING/MAVS and enhances recruitment of PPM1G to dephosphorylate p-STING/p-MAVS for immunosuppression. Inhibition of PPM1G expression improves the antiviral response against both DNA and RNA viruses. Collectively, our study shows that PPM1G restricts both cytosolic DNA– and RNA–sensing pathways to naturally balance the intensity of the antiviral response. Manipulation of PPM1G by KSHV provides an important strategy for immune evasion.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yunqiang Chen ◽  
Yuheng Shi ◽  
Jing Wu ◽  
Nan Qi

Mitochondrial antiviral signaling protein (MAVS) functions as a “switch” in the immune signal transduction against most RNA viruses. Upon viral infection, MAVS forms prion-like aggregates by receiving the cytosolic RNA sensor retinoic acid-inducible gene I-activated signaling and further activates/switches on the type I interferon signaling. While under resting state, MAVS is prevented from spontaneously aggregating to switch off the signal transduction and maintain immune homeostasis. Due to the dual role in antiviral signal transduction and immune homeostasis, MAVS has emerged as the central regulation target by both viruses and hosts. Recently, researchers show increasing interest in viral evasion strategies and immune homeostasis regulations targeting MAVS, especially focusing on the post-translational modifications of MAVS, such as ubiquitination and phosphorylation. This review summarizes the regulations of MAVS in antiviral innate immune signaling transduction and immune homeostasis maintenance.


2017 ◽  
Author(s):  
Sean Matthew McCauley ◽  
Kyusik Kim ◽  
Anetta Nowosielska ◽  
Ann Dauphin ◽  
Leonid Yurkovetskiy ◽  
...  

ABSTRACTHIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, these individuals have chronic inflammation associated with heightened risk of cardiovascular pathology. HIV-1 establishes proviruses in long-lived CD4+memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Though the majority of proviruses that persist during antiviral therapy are defective for production of infectious virions, many are expressed, raising the possibility that the HIV-1provirus or its transcripts contribute to ongoing inflammation. Here we found that the HIV-1 provirus activated innate immune signaling in isolated dendritic cells, macrophages, and CD4+T cells. Immune activation required transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. Ifrevwas providedin trans, all HIV-1 coding sequences were dispensable for activation except thosecis-acting sequences required for replication or splicing. These results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi126-vi126
Author(s):  
Michelle Bowie ◽  
Seethalakshmi Hariharan ◽  
Janell Hostettler ◽  
Kristen Roso ◽  
Yiping He ◽  
...  

Abstract BACKGROUND Innate based immunotherapies are becoming increasingly important for treating brain tumor patients. Gliomas carry recurrent mutations in regulatory genes that control innate immune signaling responses. About 71% of adult WHO grade II and III gliomas and 57% of secondary glioblastomas also carry a loss-of-function mutation in the ATRX gene. ATRX is a SWI-SNF chromatin remodeling protein that has major roles in processes such as cell cycle regulation and maintenance of genomic stability. Recent studies have implicated ATRX in dysfunctional innate immune signaling in cancer cells. However, the role of ATRX in mediating innate immune responses has not been investigated in gliomas. METHODS AND RESULTS Human and mouse glioma cell lines from a variety of genetic contexts have been examined including models which carry IDH/ATRX mutations, IDH 1p-/19q- and ATRX -/- status. Additionally, using Crispr-Cas9 technology and cloning cell lines with ATRX deletions, we have derived a series of immune competent and nude mice models. Treating these cell lines with double-stranded RNA based innate stimuli led to an enhanced early induction in phospho-interferon regulatory factor 3 (IRF3) and late induction in phospho-STAT1 in the ATRX knockout (KO) cell lines. A differential increase in interferon-stimulated gene 15 (ISG15) release was also noted in the ATRX KO cell lines, further suggesting that ATRX deletion may enable a potent activation of type I interferon production. A combination of patient-derived glioma cell lines in xenograft models and syngeneic murine glioma models derived from ATRX KO cell lines and controls confirm a survival advantage in both immuno-competent mice and xenografts. Our models are under evaluation with PVSRIPO and other innate based RNA therapies. CONCLUSION Our data suggests that ATRX mutations may confer sensitivity to RNA-based innate immune signaling agonists in gliomas. This potential vulnerability can be targeted in future therapies.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Jeonghyun Ahn ◽  
Glen N. Barber

AbstractThe first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.


2019 ◽  
Vol 93 (12) ◽  
Author(s):  
Jiyao Chen ◽  
Dang Wang ◽  
Zheng Sun ◽  
Li Gao ◽  
Xinyu Zhu ◽  
...  

ABSTRACTEquine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the familyArteriviridaeand pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCEThe arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro. In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Fangyi Wu ◽  
Zhenmin Niu ◽  
Bin Zhou ◽  
Pengcheng Li ◽  
Feng Qian

Proteasome is a large protein complex, which degrades most intracellular proteins. It regulates numerous cellular processes, including the removal of misfolded or unfolded proteins, cell cycle control, and regulation of apoptosis. However, the function of proteasome subunits in viral immunity has not been well characterized. In this study, we identified PSMB1, a member of the proteasome β subunits (PSMB) family, as a negative regulator of innate immune responses during viral infection. Knockdown of PSMB1 enhanced the RNA virus-induced cytokine and chemokine production. Overexpression of PSMB1 abolished virus-induced activation of the interferon-stimulated response element (ISRE) and interferon beta (IFNβ) promoters. Mechanistically, PSMB1 inhibited the activation of RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) signaling pathways. PSMB1 was induced after viral infection and its interaction with IKK-ε promoted degradation of IKK-ε through the ubiquitin-proteasome system. Collectively, our study demonstrates PSMB1 is an important regulator of innate immune signaling.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 2 ◽  
Author(s):  
Jikai Zhang ◽  
Zhijie Li ◽  
Jiapei Huang ◽  
Hang Yin ◽  
Jin Tian ◽  
...  

In response to viral infection, host cells activate various antiviral responses to inhibit virus replication. While feline herpesvirus 1 (FHV-1) manipulates the host early innate immune response in many different ways, the host could activate the antiviral response to counteract it through some unknown mechanisms. MicroRNAs (miRNAs) which serve as a class of regulatory factors in the host, participate in the regulation of the host innate immune response against virus infection. In this study, we found that the expression levels of miR-26a were significantly upregulated upon FHV-1 infection. Furthermore, FHV-1 infection induced the expression of miR-26a via a cGAS-dependent pathway, and knockdown of cellular cGAS significantly blocked the expression of miR-26a induced by poly (dA:dT) or FHV-1 infection. Next, we investigated the biological function of miR-26a during viral infection. miR-26a was able to increase the phosphorylation of STAT1 and promote type I IFN signaling, thus inhibiting viral replication. The mechanism study showed that miR-26a directly targeted host SOCS5. Knockdown of SOCS5 increased the phosphorylation of STAT1 and enhanced the type I IFN-mediated antiviral response, and overexpression of suppressor of the cytokine signalling 5 (SOCS5) decreased the phosphorylation of STAT1 and inhibited the type I IFN-mediated antiviral response. Meanwhile, with the knockdown of SOCS5, the upregulated expression of phosphorylated STAT1 and the anti-virus effect induced by miR-26a were significantly inhibited. Taken together, our data demonstrated a new strategy of host miRNAs against FHV-1 infection by enhancing IFN antiviral signaling.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Matthew G. Zimmerman ◽  
James R. Bowen ◽  
Circe E. McDonald ◽  
Ellen Young ◽  
Ralph S. Baric ◽  
...  

ABSTRACT Flaviviruses are a diverse group of arthropod-borne viruses responsible for numerous significant public health threats; therefore, understanding the interactions between these viruses and the human immune response remains vital. West Nile virus (WNV) and Zika virus (ZIKV) infect human dendritic cells (DCs) and can block antiviral immune responses in DCs. Previously, we used mRNA sequencing and weighted gene coexpression network analysis (WGCNA) to define molecular signatures of antiviral DC responses following activation of innate immune signaling (RIG-I, MDA5, or type I interferon [IFN] signaling) or infection with WNV. Using this approach, we found that several genes involved in T cell cosignaling and antigen processing were not enriched in DCs during WNV infection. Using cis-regulatory sequence analysis, STAT5 was identified as a regulator of DC activation and immune responses downstream of innate immune signaling that was not activated during either WNV or ZIKV infection. Mechanistically, WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and interleukin-4 (IL-4), but not granulocyte-macrophage colony-stimulating factor (GM-CSF), signaling. Unexpectedly, dengue virus serotypes 1 to 4 (DENV1 to DENV4) and the yellow fever 17D vaccine strain (YFV-17D) did not antagonize STAT5 phosphorylation. In contrast to WNV, ZIKV inhibited JAK1 and TYK2 phosphorylation following type I IFN treatment, suggesting divergent mechanisms used by these viruses to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert the immune response in infected DCs. IMPORTANCE Flaviviruses are a diverse group of insect-borne viruses responsible for numerous significant public health threats. Previously, we used a computational biology approach to define molecular signatures of antiviral DC responses following activation of innate immune signaling or infection with West Nile virus (WNV). In this work, we identify STAT5 as a regulator of DC activation and antiviral immune responses downstream of innate immune signaling that was not activated during either WNV or Zika virus (ZIKV) infection. WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and IL-4, but not GM-CSF, signaling. However, other related flaviviruses, dengue virus serotypes 1 to 4 and the yellow fever 17D vaccine strain, did not antagonize STAT5 phosphorylation. Mechanistically, WNV and ZIKV showed differential inhibition of Jak kinases upstream of STAT5, suggesting divergent countermeasures to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert antiviral immune responses in human DCs.


2015 ◽  
Vol 89 (7) ◽  
pp. 3819-3832 ◽  
Author(s):  
Julie Delaloye ◽  
Abdelali Filali-Mouhim ◽  
Mark J. Cameron ◽  
Elias K. Haddad ◽  
Alexandre Harari ◽  
...  

ABSTRACTNYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade Cenv,gag,pol, andnefgenes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with theB19Rdeletion (NYVAC-C-ΔB19R), or NYVAC-C withB8RandB19Rdeletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion ofB8RandB19Rresulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion ofB8RandB19Rwas organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4+T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector.IMPORTANCENYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.


Sign in / Sign up

Export Citation Format

Share Document