scholarly journals Fully 3D-printed soft robots with integrated fluidic circuitry

2021 ◽  
Vol 7 (29) ◽  
pp. eabe5257
Author(s):  
Joshua D. Hubbard ◽  
Ruben Acevedo ◽  
Kristen M. Edwards ◽  
Abdullah T. Alsharhan ◽  
Ziteng Wen ◽  
...  

The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements—e.g., fluidic diodes, “normally closed” transistors, and “normally open” transistors with geometrically tunable pressure-gain functionalities—to operate in response to fluidic analogs of conventional electronic signals, including constant-flow [“direct current (DC)”], “alternating current (AC)”–inspired, and preprogrammed aperiodic (“variable current”) input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 71 ◽  
Author(s):  
Ali Zolfagharian ◽  
Akif Kaynak ◽  
Sui Yang Khoo ◽  
Jun Zhang ◽  
Saeid Nahavandi ◽  
...  

A new type of soft actuator was developed by using hydrogel materials and three-dimensional (3D) printing technology, attracting the attention of researchers in the soft robotics field. Due to parametric uncertainties of such actuators, which originate in both a custom design nature of 3D printing as well as time and voltage variant characteristics of polyelectrolyte actuators, a sophisticated model to estimate their behaviour is required. This paper presents a practical modeling approach for the deflection of a 3D printed soft actuator. The suggested model is composed of electrical and mechanical dynamic models while the earlier version describes the actuator as a resistive-capacitive (RC) circuit. The latter model relates the ionic charges to the bending of an actuator. The experimental results were acquired to estimate the transfer function parameters of the developed model incorporating Takagi-Sugeno (T-S) fuzzy sets. The proposed model was successful in estimating the end-point trajectory of the actuator, especially in response to a broad range of input voltage variation. With some modifications in the electromechanical aspects of the model, the proposed modelling method can be used with other 3D printed soft actuators.


Robotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 52 ◽  
Author(s):  
Charbel Tawk ◽  
Gursel Alici

The modeling of soft structures, actuators, and sensors is challenging, primarily due to the high nonlinearities involved in such soft robotic systems. Finite element modeling (FEM) is an effective technique to represent soft and deformable robotic systems containing geometric nonlinearities due to large mechanical deformations, material nonlinearities due to the inherent nonlinear behavior of the materials (i.e., stress-strain behavior) involved in such systems, and contact nonlinearities due to the surfaces that come into contact upon deformation. Prior to the fabrication of such soft robotic systems, FEM can be used to predict their behavior efficiently and accurately under various inputs and optimize their performance and topology to meet certain design and performance requirements. In this article, we present the implementation of FEM in the design process of directly three-dimensional (3D) printed pneumatic soft actuators and sensors to accurately predict their behavior and optimize their performance and topology. We present numerical and experimental results to show that this approach is very effective to rapidly and efficiently design the soft actuators and sensors to meet certain design requirements and to save time, modeling, design, and fabrication resources.


2016 ◽  
Vol 22 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Xiaoyong Tian ◽  
Ming Yin ◽  
Dichen Li

Purpose Artificial electromagnetic (EM) medium and devices are designed with integrated micro- and macro-structures depending on the EM transmittance performance, which is difficult to fabricate by the conventional processes. Three-dimensional (3D) printing provides a new solution for the delicate artificial EM medium. This paper aims to first review the applications of 3D printing in the fabrication of EM medium briefly, mainly focusing on photonic crystals, metamaterials and gradient index (GRIN) devices. Then, a new design and fabrication strategy is proposed for the EM medium based on the 3D printing process, which was verified by the implementation of a 3D 90o Eaton lens based on GRIN metamaterials. Design/methodology/approach A new design and manufacturing strategy driven by the physical (EM transmittance) performance is proposed to illustrate the realization procedures of EM medium based device with controllable micro- and macro-structures. Stereolithography-based 3D printing process is used to obtain the designed EM device, an GRIN Eaton lens. The EM transmittance of the Eaton lens was validated experimentally and by simulation. Findings A 3D 90o Eaton lens was realized based on GRIN metamaterials structure according to the proposed design and manufacturing strategy, which had the broadband (12-18 GHz) and low loss characteristic. The feasibility of 3D printing for the artificial EM medium and GRIN devices has been verified for the further real applications in the industries. Originality/value The applications of 3D printing in artificial EM medium and devices were systematically reviewed. A new design strategy driven by physical performance for the EM device was proposed and validated by the firstly 3D printed 3D Eaton lens.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


2021 ◽  
Vol 6 (2) ◽  
pp. 795-802
Author(s):  
Ryan L. Truby ◽  
Lillian Chin ◽  
Daniela Rus
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Olivier Oldrini ◽  
Patrick Armand ◽  
Christophe Duchenne ◽  
Sylvie Perdriel ◽  
Maxime Nibart

Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials.


2020 ◽  
Vol 53 (03) ◽  
pp. 324-334
Author(s):  
Gautam Biswas

Abstract Reconstruction of the complex anatomy and aesthetics of the midface is often a challenge. A careful understanding of this three-dimensional (3D) structure is necessary. Anticipating the extent of excision and its planning following oncological resections is critical.In the past over two decades, with the advances in microsurgical procedures, contributions toward the reconstruction of this area have generated interest. Planning using digital imaging, 3D printed models, osseointegrated implants, and low-profile plates, has favorably impacted the outcome. However, there are still controversies in the management: to use single composite tissues versus multiple tissues; implants versus autografts; vascularized versus nonvascularized bone; prosthesis versus reconstruction.This article explores the present available options in maxillary reconstruction and outlines the approach in the management garnered from past publications and experiences.


2021 ◽  
pp. 112067212110000
Author(s):  
Annabel LW Groot ◽  
Jelmer S Remmers ◽  
Roel JHM Kloos ◽  
Peerooz Saeed ◽  
Dyonne T Hartong

Purpose: Recurrent contracted sockets are complex situations where previous surgeries have failed, disabling the wear of an ocular prosthesis. A combined method of surgery and long-term fixation using custom-made, three-dimensional (3D) printed conformers is evaluated. Methods: Retrospective case series of nine patients with recurrent excessive socket contraction and inability to wear a prosthesis, caused by chemical burns ( n = 3), fireworks ( n = 3), trauma ( n = 2) and enucleation and radiotherapy at childhood due to optic nerve glioma ( n = 1) with three average previous socket surgeries (range 2–6). Treatment consisted of a buccal mucosal graft and personalized 3D-printed conformer designed to be fixated to the periosteum and tarsal plates for minimal 2 months. Primary outcome was the retention of an ocular prosthesis. Secondary outcome was the need for additional surgeries. Results: Outcomes were measured at final follow-up between 7 and 36 months postoperatively (mean 20 months). Eight cases were able to wear an ocular prosthesis after 2 months. Three cases initially treated for only the upper or only the lower fornix needed subsequent surgery for the opposite fornix for functional reasons. Two cases had later surgery for cosmetic improvement of upper eyelid position. Despite pre-existing lid abnormalities (scar, entropion, lash deficiency), cosmetic outcome was judged highly acceptable in six cases because of symmetric contour and volume, and reasonably acceptable in the remaining two. Conclusions: Buccal mucosal transplant fixated with a personalized 3D-designed conformer enables retention of a well-fitted ocular prosthesis in previously failed socket surgeries. Initial treatment of both upper and lower fornices is recommended to avoid subsequent surgeries for functional reasons.


Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


Sign in / Sign up

Export Citation Format

Share Document