scholarly journals Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR

2021 ◽  
Vol 7 (22) ◽  
pp. eabf0971
Author(s):  
Sophie Kaspar ◽  
Christian Oertlin ◽  
Karolina Szczepanowska ◽  
Alexandra Kukat ◽  
Katharina Senft ◽  
...  

In response to disturbed mitochondrial gene expression and protein synthesis, an adaptive transcriptional response sharing a signature of the integrated stress response (ISR) is activated. We report an intricate interplay between three transcription factors regulating the mitochondrial stress response: CHOP, C/EBPβ, and ATF4. We show that CHOP acts as a rheostat that attenuates prolonged ISR, prevents unfavorable metabolic alterations, and postpones the onset of mitochondrial cardiomyopathy. Upon mitochondrial dysfunction, CHOP interaction with C/EBPβ is needed to adjust ATF4 levels, thus preventing overactivation of the ATF4-regulated transcriptional program. Failure of this interaction switches ISR from an acute to a chronic state, leading to early respiratory chain deficiency, energy crisis, and premature death. Therefore, contrary to its previously proposed role as a transcriptional activator of mitochondrial unfolded protein response, our results highlight a role of CHOP in the fine-tuning of mitochondrial ISR in mammals.


2021 ◽  
Author(s):  
James P Held ◽  
Benjamin R Saunders ◽  
Claudia V Pereria ◽  
Maulik R Patel

The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We unexpectedly discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is central to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing towards its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.



2021 ◽  
Vol 22 (15) ◽  
pp. 8146
Author(s):  
Garrett Dalton Smedley ◽  
Keenan E. Walker ◽  
Shauna H. Yuan

Neurodegenerative diseases are an ever-increasing problem for the rapidly aging population. Despite this, our understanding of how these neurodegenerative diseases develop and progress, is in most cases, rudimentary. Protein kinase RNA (PKR)-like ER kinase (PERK) comprises one of three unfolded protein response pathways in which cells attempt to manage cellular stress. However, because of its role in the cellular stress response and the far-reaching implications of this pathway, error within the PERK pathway has been shown to lead to a variety of pathologies. Genetic and clinical studies show a correlation between failure of the PERK pathway in neural cells and the development of neurodegeneration, but the wide array of methodology of these studies is presenting conflicting narratives about the role of PERK in these affected systems. Because of the connection between PERK and pathology, PERK has become a high value target of study for understanding neurodegenerative diseases and potentially how to treat them. Here, we present a review of the literature indexed in PubMed of the PERK pathway and some of the complexities involved in investigating the protein’s role in the development of neurodegenerative diseases as well as how it may act as a target for therapeutics.



2020 ◽  
Author(s):  
Terytty Yang Li ◽  
Maroun Bou Sleiman ◽  
Hao Li ◽  
Arwen W. Gao ◽  
Adrienne Mottis ◽  
...  

Abstract Organisms respond to mitochondrial stress by activating multiple defense pathways including the mitochondrial unfolded protein response (UPRmt). However, how different layers of UPRmt regulators are orchestrated to transcriptionally activate the stress responses remains largely unknown. Here we identified CBP-1, the worm ortholog of the mammalian acetyltransferases CBP/p300, as an essential regulator for UPRmt activation, as well as for mitochondrial stress-induced immune response, reduction of amyloid-β aggregation and lifespan extension in Caenorhabditis elegans. Mechanistically, CBP-1 acts downstream of histone demethylases, JMJD-1.2/JMJD-3.1, and upstream of UPRmt transcription factors including ATFS-1, to systematically induce a broad spectrum of UPRmt genes and execute multiple beneficial functions. In mouse and human populations, transcript levels of CBP/p300 positively correlate with UPRmt transcripts and longevity. Furthermore, CBP/p300 inhibition disrupts, while forced expression of p300 is sufficient to activate, the UPRmt in mammalian cells. These results highlight an evolutionarily conserved mechanism that determines mitochondrial stress response, and promotes health and longevity through CBP/p300.



eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kaiyu Gao ◽  
Yi Li ◽  
Shumei Hu ◽  
Ying Liu

Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress.



2020 ◽  
Vol 245 (10) ◽  
pp. 861-878 ◽  
Author(s):  
Sheng-Fan Wang ◽  
Shiuan Chen ◽  
Ling-Ming Tseng ◽  
Hsin-Chen Lee

Mitochondria are important organelles that are responsible for cellular energy metabolism, cellular redox/calcium homeostasis, and cell death regulation in mammalian cells. Mitochondrial dysfunction is involved in various diseases, such as neurodegenerative diseases, cardiovascular diseases, immune disorders, and cancer. Defective mitochondria and metabolism remodeling are common characteristics in cancer cells. Several factors, such as mitochondrial DNA copy number changes, mitochondrial DNA mutations, mitochondrial enzyme defects, and mitochondrial dynamic changes, may contribute to mitochondrial dysfunction in cancer cells. Some lines of evidence have shown that mitochondrial dysfunction may promote cancer progression. Here, several mitochondrial stress responses, including the mitochondrial unfolded protein response and the integrated stress response, and several mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and others) are reviewed; these pathways and molecules are considered to act as retrograde signaling regulators in the development and progression of cancer. Targeting these components of the mitochondrial stress response may be an important strategy for cancer treatment. Impact statement Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.



2020 ◽  
Author(s):  
Peter Shyu ◽  
Wei Sheng Yap ◽  
Maria L. Gaspar ◽  
Stephen A. Jesch ◽  
Charlie Marvalim ◽  
...  

Lipid droplets (LDs) have long been regarded as inert cytoplasmic organelles with the primary function of housing excess intracellular lipids. More recently, LDs have been strongly implicated in conditions of lipid and protein dysregulation. The fat storage inducing transmembrane (FIT) family of proteins comprises of evolutionarily conserved endoplasmic reticulum (ER)-resident proteins that have been reported to induce LD formation. Here, we establish a model system to study the role of S. cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in proteostasis and stress response pathways. While LD biogenesis and basal ER stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Devoid of a functional UPR, scs3 mutants exhibited accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting a UPR-dependent compensatory mechanism for LD maturation. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, the absence of the ScFIT proteins results in the downregulation of the closely-related Heat Shock Response (HSR) pathway. In line with this observation, global protein ubiquitination and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFIT cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Taken together, these suggest that ScFIT proteins may modulate proteostasis and stress response pathways with lipid metabolism at the interface between the two cellular processes.



2021 ◽  
Vol 22 (5) ◽  
pp. 2567
Author(s):  
Yann S. Gallot ◽  
Kyle R. Bohnert

Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.





Author(s):  
Ana Sayuri Yamagata ◽  
Paula Paccielli Freire

Cancer cachexia is associated with deficient response to chemotherapy. On the other hand, the tumors of cachectic patients remarkably express more chemokines and have higher immune infiltration. For immunogenicity, a strong induction of the unfolded protein response (UPR) is necessary. UPR followed by cell surface exposure of calreticulin on the dying tumor cell is essential for its engulfment by macrophages and dendritic cells. However, some tumor cells upon endoplasmic reticulum (ER) stress can release factors that induce ER stress to other cells, in the so-called transmissible ER stress (TERS). The cells that received TERS produce more interleukin 6 (IL-6) and chemokines and acquire resistance to subsequent ER stress, nutrient deprivation, and genotoxic stress. Since ER stress enhances the release of extracellular vesicles (EVs), we suggest they can mediate TERS. It was found that ER stressed cachexia-inducing tumor cells transmit factors that trigger ER stress in other cells. Therefore, considering the role of EVs in cancer cachexia, the release of exosomes can possibly play a role in the process of blunting the immunogenicity of the cachexia-associated tumors. We propose that TERS can cause an inflammatory and immunosuppressive phenotype in cachexia-inducing tumors.



1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.



Sign in / Sign up

Export Citation Format

Share Document