scholarly journals Force-mediated cellular anisotropy and plasticity dictate the elongation dynamics of embryos

2021 ◽  
Vol 7 (27) ◽  
pp. eabg3264
Author(s):  
Chao Fang ◽  
Xi Wei ◽  
Xueying Shao ◽  
Yuan Lin

We developed a unified dynamic model to explain how cellular anisotropy and plasticity, induced by alignment and severing/rebundling of actin filaments, dictate the elongation dynamics of Caenorhabditis elegans embryos. It was found that the gradual alignment of F-actins must be synchronized with the development of intracellular forces for the embryo to elongate, which is then further sustained by muscle contraction–triggered plastic deformation of cells. In addition, we showed that preestablished anisotropy is essential for the proper onset of the process while defects in the integrity or bundling kinetics of actin bundles result in abnormal embryo elongation, all in good agreement with experimental observations.

2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


2002 ◽  
Vol 17 (9) ◽  
pp. 2433-2441 ◽  
Author(s):  
Wolfgang Pantleon

During plastic deformation, dislocation boundaries are formed and orientation differences across them arise. Two different causes lead to the formation of two kinds of deformation-induced boundaries: a statistical trapping of dislocations in incidental dislocation boundaries and a difference in the activation of slip systems on both sides of geometrically necessary boundaries. On the basis of these mechanisms, the occurrence of disorientations across both types of dislocation boundaries is modeled by dislocation dynamics. The resulting evolution of the disorientation angles with strain is in good agreement with experimental observations. The theoretically obtained distribution functions for the disorientation angles describe the experimental findings well and explain their scaling behavior. The model also predicts correlations between disorientations in neighboring boundaries, and evidence for their existence is presented.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


1965 ◽  
Vol 20 (12) ◽  
pp. 1648-1654 ◽  
Author(s):  
I. Broser ◽  
H.-E. Gumlich ◽  
R. Moser

The kinetics of holes in electroluminescence has been calculated by means of simple two- and three-level-models. As a result an equation is given which describes the ratio of intensity of different emission bands and the degree of luminescence quenching by iron group elements as a function of field frequency and temperature. The calculated curves are in good agreement with the values observed in ZnS containing Cu, Mn, Fe, Co, Ni respectively. The kinetics has been used to calculate the energetic separation of acceptor levels from the valence band and other constants.


1967 ◽  
Vol 19 (2) ◽  
pp. 533-541 ◽  
Author(s):  
S. N. Komnik ◽  
V. Z. Bengus ◽  
E. D. Lyak

1983 ◽  
Vol 105 (3) ◽  
pp. 277-284 ◽  
Author(s):  
P. Meijers ◽  
F. Roode

A general description of creep and plastic deformation based on overlay models is presented. This includes the description of time effects during plastic deformation at room temperature. A detailed procedure to obtain the model parameters is also discussed. The description has been evaluated for a large number of uniaxial and biaxial load histories on thin walled tubes. The materials involved are a 2 1/4 Cr-1 Mo steel stabilized with Niobium (WN 1.6770) and a 304 stainless steel (WN 1.4948). The theoretical predictions of the plastic deformations are found to be sufficiently accurate. The evaluation of the phenomenological description for creep shows a fairly good agreement with the real creep deformation process. Special attention requires the description of softening due to microstructural changes.


2018 ◽  
Vol 115 (45) ◽  
pp. 11537-11542 ◽  
Author(s):  
Rodrigo Cáceres ◽  
Nagagireesh Bojanala ◽  
Laura C. Kelley ◽  
Jes Dreier ◽  
John Manzi ◽  
...  

During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion inCaenorhabditis elegans, we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption inC. elegans.


Sign in / Sign up

Export Citation Format

Share Document