scholarly journals Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos

Science ◽  
2019 ◽  
pp. eaav9973 ◽  
Author(s):  
Erwei Zuo ◽  
Yidi Sun ◽  
Wu Wei ◽  
Tanglong Yuan ◽  
Wenqin Ying ◽  
...  

Genome editing holds promise for correcting pathogenic mutations. However, it is difficult to determine off-target effects of editing due to single nucleotide polymorphism in individuals. Here, we developed a method named GOTI (Genome-wide Off-target analysis by Two-cell embryo Injection) to detect off-target mutations by editing one blastomere of two-cell mouse embryos using either CRISPR-Cas9 or base editors. Comparison of the whole genome sequences of progeny cells of edited vs. non-edited blastomeres at E14.5 showed that off-target single nucleotide variants (SNVs) were rare in embryos edited by CRISPR-Cas9 or adenine base editor, with a frequency close to the spontaneous mutation rate. In contrast, cytosine base editing induced SNVs with over 20-fold higher frequencies, requiring a solution to address its fidelity.

2018 ◽  
Author(s):  
Erwei Zuo ◽  
Yidi Sun ◽  
Wu Wei ◽  
Tanglong Yuan ◽  
Wenqin Ying ◽  
...  

AbstractGenome editing tools including CRISPR/Cas9 and base editors hold great promise for correcting pathogenic mutations. Unbiased genome-wide off-target effects of the editing in mammalian cells is required before clinical applications, but determination of the extent of off-target effects has been difficult due to the existence of single nucleotide polymorphisms (SNPs) in individuals. Here, we developed a method named GOTI (Genome-wide Off-target analysis by Two-cell embryo Injection) to detect off-target mutations without interference of SNPs. We applied GOTI to both the CRISPR-Cas9 and base editing (BE3) systems by editing one blastomere of the two-cell mouse embryo and then compared whole genome sequences of progeny-cell populations at E14.5 stage. Sequence analysis of edited and non-edited cell progenies showed that undesired off-target single nucleotide variants (SNVs) are rare (average 10.5) in CRISPR-edited mouse embryos, with a frequency close to the spontaneous mutation rate. By contrast, BE3 editing induced over 20-fold higher SNVs (average 283), raising the concern of using base-editing approaches for biomedical application.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hye Kyung Lee ◽  
Harold E. Smith ◽  
Chengyu Liu ◽  
Michaela Willi ◽  
Lothar Hennighausen

AbstractDeaminase base editing has emerged as a tool to install or correct point mutations in the genomes of living cells in a wide range of organisms. However, the genome-wide off-target effects introduced by base editors in the mammalian genome have been examined in only one study. Here, we have investigated the fidelity of cytosine base editor 4 (BE4) and adenine base editors (ABE) in mouse embryos using unbiased whole-genome sequencing of a family-based trio cohort. The same sgRNA was used for BE4 and ABE. We demonstrate that BE4-edited mice carry an excess of single-nucleotide variants and deletions compared to ABE-edited mice and controls. Therefore, an optimization of cytosine base editors is required to improve its fidelity. While the remarkable fidelity of ABE has implications for a wide range of applications, the occurrence of rare aberrant C-to-T conversions at specific target sites needs to be addressed.


Science ◽  
2019 ◽  
pp. eaaw7166 ◽  
Author(s):  
Shuai Jin ◽  
Yuan Zong ◽  
Qiang Gao ◽  
Zixu Zhu ◽  
Yanpeng Wang ◽  
...  

Cytosine and adenine base editors (CBEs and ABEs) are promising new tools for achieving the precise genetic changes required for disease treatment and trait improvement. However, genome-wide and unbiased analyses of their off-target effects in vivo are still lacking. Our whole genome sequencing (WGS) analysis of rice plants treated with BE3, high-fidelity BE3 (HF1-BE3), or ABE revealed that BE3 and HF1-BE3, but not ABE, induce substantial genome-wide off-target mutations, which are mostly the C→T type of single nucleotide variants (SNVs) and appear to be enriched in genic regions. Notably, treatment of rice with BE3 or HF1-BE3 in the absence of single-guide RNA also results in the rise of genome-wide SNVs. Thus, the base editing unit of BE3 or HF1-BE3 needs to be optimized in order to attain high fidelity.


2019 ◽  
Author(s):  
Hye Kyung Lee ◽  
Harold E. Smith ◽  
Chengyu Liu ◽  
Michaela Willi ◽  
Lothar Hennighausen

ABSTRACTDeaminase base editing has emerged as a tool to install or correct point mutations in the genomes of living cells in a wide range of organisms and its ultimate success therapeutically depends on its accuracy. Here we have investigated the fidelity of cytosine base editor 4 (BE4) and adenine base editor (ABE) in mouse embryos using unbiased whole genome sequencing of a family-based trio cohort. We demonstrate that BE4-edited mice carry an excess of single-nucleotide variants and deletions compared to ABE-edited mice and controls.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Serge Gangloff ◽  
Guillaume Achaz ◽  
Stefania Francesconi ◽  
Adrien Villain ◽  
Samia Miled ◽  
...  

To maintain life across a fluctuating environment, cells alternate between phases of cell division and quiescence. During cell division, the spontaneous mutation rate is expressed as the probability of mutations per generation (Luria and Delbrück, 1943; Lea and Coulson, 1949), whereas during quiescence it will be expressed per unit of time. In this study, we report that during quiescence, the unicellular haploid fission yeast accumulates mutations as a linear function of time. The novel mutational landscape of quiescence is characterized by insertion/deletion (indels) accumulating as fast as single nucleotide variants (SNVs), and elevated amounts of deletions. When we extended the study to 3 months of quiescence, we confirmed the replication-independent mutational spectrum at the whole-genome level of a clonally aged population and uncovered phenotypic variations that subject the cells to natural selection. Thus, our results support the idea that genomes continuously evolve under two alternating phases that will impact on their size and composition.


Author(s):  
Erwei Zuo ◽  
Yidi Sun ◽  
Tanglong Yuan ◽  
Bingbing He ◽  
Changyang Zhou ◽  
...  

Base editors hold promise for correcting pathogenic mutations, while substantial single nucleotide variations (SNVs) on both DNA and RNA were generated by cytosine base editors (CBEs). Here we examined possibilities to reduce off-target effects by engineering cytosine deaminases. By screening 24 CBEs harboring various rAPOBEC1 (BE3) or human APOBEC3A (BE3-hA3A) mutations on the ssDNA or RNA binding domain, we found 8 CBE variations could maintain high on-target editing efficiency. Using Genome-wide Off-target analysis by Two-cell embryo Injection (GOTI) method and RNA sequencing analysis, we found DNA off-target SNVs induced by BE3 could be completely eliminated in BE3R126E but the off-target RNA SNVs was only slightly reduced. By contrast, BE3-hA3AY130F abolished the RNA off-target effects while could not reduce the DNA off-target effects. Notably, BE3R132E, BE3W90Y+R126E and BE3W90F+R126E achieved the elimination of off-target SNVs on both DNA and RNA, suggesting the feasibility of engineering base editors for high fidelity deaminases.


2017 ◽  
Author(s):  
Serge Gangloff ◽  
Guillaume Achaz ◽  
Adrien Villain ◽  
Samia Miled ◽  
Claire Denis ◽  
...  

One Sentence SummaryThe quiescence-driven mutational landscape reveals a novel evolutionary force.AbstractDuring cell division, the spontaneous mutation rate is expressed as the probability of mutations per generation, whereas during quiescence it will be expressed per unit of time. In this study, we report that during quiescence, the unicellular haploid fission yeast accumulates mutations as a linear function of time. We determined that 3 days of quiescence generate a number of invalidating mutations equivalent to that of one round of DNA replication. The novel mutational landscape of quiescence is characterized by insertion/deletion accumulating as fast as single nucleotide variants, and elevated amounts of deletions. When we extended the study to 3 months of quiescence, we confirmed the replication-independent mutational spectrum at the whole-genome level of a clonally aged population and uncovered phenotypic variations that subject the cells to natural selection. Thus, our results support the idea that genomes continuously evolve under two alternating phases that will impact on their size and composition.


2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sebastian Carrasco Pro ◽  
Katia Bulekova ◽  
Brian Gregor ◽  
Adam Labadorf ◽  
Juan Ignacio Fuxman Bass

Abstract Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated ‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.


2020 ◽  
Author(s):  
Celine Charon ◽  
Rodrigue Allodji ◽  
Vincent Meyer ◽  
Jean-François Deleuze

Abstract Quality control methods for genome-wide association studies and fine mapping are commonly used for imputation, however, they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1,031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1,089 NCBI recorded individuals for additional validation.Without variant pre-filtration based on quality control (QC), we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E-04-1E-03) and rare variants (1E-03-5E-03) (p < 1E-04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) <0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E-04). As a result, to maintain confidence and enough SNVs, we propose here a 2-step post-filtration approach to increase the number of very rare and rare variants compared to conservative post-filtration methods.


Sign in / Sign up

Export Citation Format

Share Document