scholarly journals PD-1 suppresses the maintenance of cell couples between cytotoxic T cells and target tumor cells within the tumor

2020 ◽  
Vol 13 (649) ◽  
pp. eaau4518
Author(s):  
Rachel Ambler ◽  
Grace L. Edmunds ◽  
Sin Lih Tan ◽  
Silvia Cirillo ◽  
Jane I. Pernes ◽  
...  

The killing of tumor cells by CD8+ T cells is suppressed by the tumor microenvironment, and increased expression of inhibitory receptors, including programmed cell death protein-1 (PD-1), is associated with tumor-mediated suppression of T cells. To find cellular defects triggered by tumor exposure and associated PD-1 signaling, we established an ex vivo imaging approach to investigate the response of antigen-specific, activated effector CD8+ tumor-infiltrating lymphocytes (TILs) after interaction with target tumor cells. Although TIL–tumor cell couples readily formed, couple stability deteriorated within minutes. This was associated with impaired F-actin clearing from the center of the cellular interface, reduced Ca2+ signaling, increased TIL locomotion, and impaired tumor cell killing. The interaction of CD8+ T lymphocytes with tumor cell spheroids in vitro induced a similar phenotype, supporting a critical role of direct T cell–tumor cell contact. Diminished engagement of PD-1 within the tumor, but not acute ex vivo blockade, partially restored cell couple maintenance and killing. PD-1 thus contributes to the suppression of TIL function by inducing a state of impaired subcellular organization.

1976 ◽  
Vol 143 (3) ◽  
pp. 601-614 ◽  
Author(s):  
J W Schrader ◽  
G M Edelman

Cytotoxic T lymphocytes were generated in vitro against H-2 compatible or syngeneic tumor cells. In vitro cytotoxic activity was inhibited by specific anti-H2 sera, suggesting that H-2 antigens are involved in cell lysis. Two observations directly demonstrated the participation of the H-2 antigens on the tumor cells in their lysis by H-2-compatible T cells. First, coating of the H-2 antigens on the target tumor cell reduced the number of cells lysed on subsequent exposure to cytotoxic T cells. Second, when cytotoxic T cells were activated against an H-2 compatible tumor and assayed against an H-2-incompatible tumor, anti-H-2 serum that could bind to the target cell, but not to the cytotoxic lymphocyte, inhibited lysis. H-2 antigens were also shown to be present on the cytotoxic lymphocytes. Specific antisera reacting with these H-2 antigens, but not those of the target cell, failed to inhibit lysis when small numbers of effector cells were assayed against H-2-incompatible target cells or when effector cells of F1-hybrid origin and bearing two H-2 haplotypes were assayed against a tumor cell of one of the parental strains. These findings suggest that it is the H-2 antigens on the tumor cell and not those on the cytotoxic lymphocytes that are important in cell-mediated lysis of H-2-compatible tumor cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


2019 ◽  
Vol 15 (11) ◽  
pp. 2229-2239 ◽  
Author(s):  
Zhuoran Tang ◽  
Fengzhen Mo ◽  
Aiqun Liu ◽  
Siliang Duan ◽  
Xiaomei Yang ◽  
...  

Adoptive cell-based immunotherapy typically utilizes cytotoxic T lymphocytes (CTLs), expanding these cells ex vivo. Such expansion is traditionally accomplished through the use of autologous APCs that are capable of interactions with T cells. However, incidental inhibitory program such as CTLA-4 pathway can impair T cell proliferation. We therefore designed a nanobody which is specific for CTLA-4 (CTLA-4 Nb 16), and we then used this molecule to assess its ability to disrupt CTLA-4 signaling and thereby overcome negative costimulation of T cells. With CTLA-4 Nb16 stimulation, dendritic cell/hepatocellular carcinoma fusion cells (DC/HepG2-FCs) enhanced autologous CD8+ T cell proliferation and production of IFN-γ in vitro, thereby leading to enhanced killing of tumor cells. Using this approach in the context of adoptive CD8+ immunotherapy led to a marked suppression of tumor growth in murine NOD/SCID hepatocarcinoma or breast cancer xenograft models. We also observed significantly increased tumor cell apoptosis, and corresponding increases in murine survival. These findings thus demonstrate that in response to nanobody stimulation, DC/tumor cells-FC-induced specific CTLs exhibit superior anti-tumor efficacy, making this a potentially valuable means of achieving better adoptive immunotherapy outcomes in cancer patients.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 145-145
Author(s):  
Juhua Zhou ◽  
Yin Zhong ◽  
Zhongjun Hou ◽  
Jianzhong Zhang ◽  
Yanmin Li ◽  
...  

145 Background: Clinical trials have shown that adoptive cell transfer therapy is a promising method for cancer treatment. In the current study, we aim to generate and characterize anti-tumor tumor-infiltrating lymphocytes from patients with breast cancer for adoptive cell transfer therapy. Methods: In vitro culture method was used to generate anti-tumor, tumor-infiltrating lymphocytes from patients with breast cancer. FACS analysis, ELISA, and Elispot assay were used to characterize tumor-infiltrating lymphocytes. Autologous anti-tumor tumor-infiltrating lymphocytes from patients with breast cancer were used in adoptive cell transfer therapy. Results: FACS analysis indicated that tumor-infiltrating lymphocytes were present in the tumor tissues, but not detectable in the normal breast tissues from patients with breast cancer. Tumor-infiltrating lymphocytes could be generated in vitro from fresh tumor specimens of patients with breast cancer. Both CD4 T cells and CD8 T cells were detected in tumor-infiltrating lymphocytes. Autologous tumor cells could also generate in vitro from fresh tumor tissue samples of patients with breast cancer. Among 22 samples screened, 6 samples (25%) of tumor-infiltrating lymphocytes are tumor-reactive. Anti-tumor, tumor-infiltrating lymphocytes could recognize autologous tumor cells and allogenic tumor cells. After a large scale T cell expansion, anti-tumor reactivity was maintained in tumor-infiltrating lymphocytes. All of tumor-infiltrating lymphocytes were NK cells in some samples from patients with breast cancer, and these NK cells could recognize autologous tumor cells and a panel of allogenic tumor cells. T cell cloning assay demonstrated that some of the tumor-reactive, tumor-infiltrating lymphocytes were CD4 T cells. Conclusions: The results suggest that anti-tumor, tumor-infiltrating lymphocytes may be generated from patients with breast cancer, which may be used in clinical applications of adoptive cell transfer therapy for patients with breast cancer. The clinical trial of adoptive cell transfer therapy using autologous anti-tumor tumor-infiltrating lymphocytes for patients with breast is under way.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1933-1933
Author(s):  
Said Dermime ◽  
Cynthia Lehe ◽  
Hazem Ghebeh ◽  
Abdullah Al-Sulaiman ◽  
Ghofran Al Qudaihi ◽  
...  

Abstract Compelling evidences indicate a key role for regulatory T cells (Tregs) on the host response to cancer and recent studies indicated that the generation of effective WT1-specific cytotoxic T cells can be largely affected by the presence of Tregs. This is the first study to describe human Tregs generated specifically against the WT1 antigen which is overexpressed in several human leukemias and provide the mechanism by which these anti-WT1 Tregs inhibit the immune response in leukemia patients. We have generated T cell lines and clones that specifically recognized a WT1-84 peptide in an HLA DRB1*0402/TCR-Vb8-restricted manner. Importantly, they recognized HLADRB1* 04-matched fresh leukemic cells expressing the WT1 antigen. These clones exerted a Th2 cytokine profile, had a CD4+CD25+Foxp3+GITR+CD127− Tregs phenotype, and significantly inhibited the proliferative activity of allogeneic T cells independently of cell-contact. Priming of allo-reactive T cells in the presence of Tregs strongly inhibited the expansion of NK; NK-T and CD8+ T cells, had an inhibitory effect on NK/NK-T cytotoxic activity but not on CD8+ T cells. Furthermore, priming of T cells with the WT1- 126 HLA-A0201-restricted peptide in the presence of Tregs strongly inhibited the induction of anti-WT1-126 CD8+ CTL responses as evidenced by both very low cytotoxic activity and IFN-g production. Moreover, these Tregs clones specifically produced Granzyme-B and selectively induced apoptosis in WT1-84 pulsed-autologous APCs but not in apoptoticresistant DR4-matched leukemic cells. Importantly, we have also detected anti-WT1-84 IL-5+/Granzyme-B+/Foxp3+ CD4+ Tregs in 5 out of 8 HLA-DR4+ AML patients. These findings suggest a critical role for anti-WT1 Tregs in the inhibition of T cell responses against leukemia. This study may have important implications for the clinical manipulation of Tregs such as immuno-targeting of TCR-Vb-8 with mAbs to eliminate anti-WT1 Tregs in leukemia patients in order to enhance GVL before vaccination with the WT1 antigen. On the other hand, leukemia patients with GVHD should be clinically-tried for vaccination with the current WT1-84 peptide or adoptively-treated with ex-vivo anti-WT1 Treg cells to specifically enhance their frequency, which is known to be very low in these patients.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-31-SCI-31
Author(s):  
Richard O. Hynes ◽  
Shahinoor Begum ◽  
Myriam Labelle

Abstract Platelets have long been known to promote metastasis, and multiple mechanisms have been proposed to explain this phenomenon, including adhesion, coagulation, and protection against natural killer (NK) cells or turbulence. One mechanism that has been little explored is the possibility that platelets might secrete growth factors or provide other stimuli that could enhance the malignant properties of tumor cells. We have shown that pretreatment of carcinoma cells with platelets induces an EMT-like transformation in their properties in vitro and renders them much more metastatic after introduction into mice. TGF-β, produced by platelets and released on their activation is essential for both the in vitro and the in vivo effects. However, TGF-β alone is insufficient; platelet-tumor cell contact is also required and this contact activates NFkB signaling, which synergizes with the TGF-β signaling. Both signals are required for the enhancement of metastasis. In addition to enhancing migration and invasion in vitro, platelets enhance extravasation in vivo. Earlier work has shown that both P-selectin (expressed on platelets) and L-selectin (expressed on leukocytes) are essential for efficient metastasis, and aggregates of tumor cells, platelets, and leukocytes can be observed at sites of tumor cell arrest and extravasation. It has also been demonstrated by others that leukocytes can enhance extravasation and metastatic seeding. Therefore, we have been interested in the question of the relative roles of platelets and leukocytes in these processes. Which cell types are recruited at the sites of metastatic seeding? Does one cell type depend on another? Which cell types enhance metastasis? What roles do the platelets play in recruiting the other cell types? The involvement of platelets in enhancing metastasis also raises questions about the effects of platelets on circulating tumor cells (CTCs). Could platelets enhance the metastatic capacity of CTCs? Could it be the case that only those CTCs that are associated with platelets and/or leukocytes are functionally involved in seeding metastases? Such aggregates are not scored in most current assays for CTCs and will require new investigative approaches. Platelet participation in metastasis also raises the possibility of therapeutic interventions targeting platelet-specific targets and the paracrine interactions between them and other cells. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Grace L. Edmunds ◽  
Carissa W.L. Wong ◽  
Rachel Ambler ◽  
Emily Milodowski ◽  
Hanin Alamir ◽  
...  

Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8+ cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2a receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2a receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this focus on CTL killing, blocking A2aR and TIM3 complements therapies that enhance T cell priming, e.g. anti-PD1 and anti-CTLA-4.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8044-8044
Author(s):  
Marie-Agnès Doucey ◽  
Blandine Pouleau ◽  
Carole Estoppey ◽  
Cian Stutz ◽  
Amelie Croset ◽  
...  

8044 Background: ISB 1342 is a bispecific antibody heterodimer based on the Ichnos proprietary Bispecific Engagement by Antibodies based on T cell receptor (BEAT) platform. ISB 1342 is a first-in-class CD38 T cell engager under investigation in subjects with relapsed multiple myeloma refractory to proteasome inhibitors (PIs), immunomodulators (IMiDs) and daratumumab (study ISB 1342-101). Methods: ISB 1342 was engineered with a single chain variable fragment (scFv) arm that specifically recognizes a cluster of differentiation (CD)3-epsilon (CD3ε) and a fragment antigen binding (Fab) arm which specifically recognizes CD38 and does not compete with daratumumab. By co-engaging CD3ε on T cells and CD38 on tumor cells, ISB 1342 redirects T cells to kill CD38-expressing tumor cells. This mechanism of action is differentiated from existing monospecific CD38 targeting therapies and was designed to overcome resistance to daratumumab in multiple myeloma. Results: In vitro, ISB 1342 killed a large range of CD38-expressing tumor cell lines (EC50:12 to 90 pM) with 8 to 239-fold superior efficacy than daratumumab. ISB 1342 was also able to efficiently kill CD38 low-intermediate-expressing tumor cells that were poorly killed by daratumumab. ISB 1342 retained the potency to kill CD38 low-intermediate-expressing tumor cells when used in sequential or concomitant combination with daratumumab. In addition, the presence of soluble CD38 or glucocorticoid did not impact ISB 1342 killing potency. ISB 1342 was constructed with a double LALA mutation that dampens the binding to Fcγ receptors and C1q. Consistently, ISB 1342 showed only residual Fc-mediated effector functions and its mechanism of tumor cell killing critically relies on the engagement and the activation of T lymphocytes. ISB 1342 showed a favorable on target specificity profile in vitro and was unable to activate T cells in the absence of CD38 positive target cells. Further, ISB 1342-induced tumor cell killing was not associated with a detectable T cell fratricide in vitro. Finally, the potency of ISB 1342 was assessed in vivo in a therapeutic model of a subcutaneously established Daudi tumor co-xenografted with human PBMCs. In marked contrast to daratumumab, which induced only a partial tumor control, ISB 1342 induced complete tumor eradication when injected intravenously weekly at 0.5 mg/kg. As anticipated, the ISB 1342 control molecule (ISB 1342_13DU) made of an irrelevant CD38 binder failed to control tumor growth. The release of the Granzyme A and B, TNF-alpha and CXCL-10 in the tumor micro-environment one week post-treatment was strongly and significantly increased by ISB 1342 but not by daratumumab and ISB 1342_13DU; this represents a correlate of anti-tumor immunity associated with ISB 1342 efficacy in vivo. Conclusions: Hence the higher potency of ISB 1342 relative to daratumumab supports the ongoing clinical development in multiple myeloma patients.


2014 ◽  
Vol 32 (15_suppl) ◽  
pp. 11127-11127
Author(s):  
Craig Gedye ◽  
Danylo Sirskyj ◽  
Nazleen Carol Lobo ◽  
Ella Hyatt ◽  
Andrew Evans ◽  
...  

11127 Background: Rare cancer stem cells (CSC), proposed to be solely responsible for tumor propagation and re-initiation, are functionally identified as tumor-initiating cells (TIC) from ex vivo tumors using xenotransplantation and clonogenic limiting dilution assays (LDA). TIC have not previously been described from ex vivohuman clear cell renal cell carcinoma (ccRCC). Methods: Primary human ccRCC samples (n=120) from patients undergoing nephrectomy were processed and implanted as subcapsular fragments or cell suspension injection LDAs with Matrigel in NOD/SCID/IL2Rγ-/- (NSG) mice, and observed for at least 6 months. In vitro clonogenic LDAs assays were performed from primary cell suspensions and ccRCC cell lines. LDAs were supplemented with human stromal cells and proteins, and the Y-26732 ROCK inhibitor. Multiparametric flow cytometry and immunofluorescence were used to investigate tumor heterogeneity and cell viability. Results: ccRCC TIC appeared rare from injected suspensions, but xenografts engrafted frequently from tiny fragments, and clonogenic frequencies were 103-104greater than TIC frequencies, suggesting that LDAs underestimated ccRCC tumor cell potential. We systematically identified multiple methodological steps that distort quantitation and identification of ccRCC TIC. For example cell viability was highly variable prior to processing, disaggregation itself destroyed up to 99% of tumor cells, standard assays substantially overestimated tumor cell viability in suspensions, and supplementation with human extracellular cells or proteins, or inhibition of anoikis by Y-26732 increased clonogenic and TIC frequencies in cell lines and primary ccRCC suspensions. Annexin-V staining revealed that tumor cells were more apoptotic then normal stromal cells, and that tumor cells positive for CD44 (a putative CSC marker) were more viable than CD44- tumor cells. Conclusions: We describe multiple, unappreciated and largely unavoidable observational errors in essential methods used to study TIC in ccRCC. ccRCC TIC may be more common than appreciated. Re-examination of the CSC hypothesis in other solid tumors is warranted in view of these previously unexplored methodological biases.


1985 ◽  
Vol 161 (5) ◽  
pp. 1122-1134 ◽  
Author(s):  
P D Greenberg ◽  
D E Kern ◽  
M A Cheever

The ability of noncytolytic Lyt-1+,2- T cells immune to FBL-3 leukemia to effect eradication of disseminated FBL-3 was studied. Adult thymectomized, irradiated, and T-depleted bone marrow-reconstituted (ATXBM) B6 hosts were cured of disseminated FBL-3 by treatment with 180 mg/kg cyclophosphamide (CY) and adoptively transferred Lyt-1+,2- T cells obtained from congenic B6/Thy-1.1 donors immune to FBL-3. Analysis of the T cell compartment of ATXBM hosts treated and rendered tumor-free by this therapy revealed that the only T cells present in the mice were donor-derived Lyt-1+,2- T cells. In vitro stimulation of these T cells with FBL-3 tumor cells, which express class I but no class II major histocompatibility complex antigens, induced lymphokine secretion, but did not result in the generation of cytotoxic T lymphocytes (CTL). Thus, in a setting in which mice lack Lyt-2+ T cells, and in which no CTL of either host or donor origin could be detected, immune Lyt-1+,2- T cells, in conjunction with CY, mediated eradication of a disseminated leukemia. The results suggest that delayed-type hypersensitivity responses induced by immune T cells represent a potentially useful effector mechanism for in vivo elimination of disseminated tumor cells.


Sign in / Sign up

Export Citation Format

Share Document