scholarly journals Novel Trichomonacidal Spermicides

2011 ◽  
Vol 55 (9) ◽  
pp. 4343-4351 ◽  
Author(s):  
Ashish Jain ◽  
Nand Lal ◽  
Lokesh Kumar ◽  
Vikas Verma ◽  
Rajeev Kumar ◽  
...  

ABSTRACTMetronidazole, the U.S. Food and Drug Administration-approved drug against trichomoniasis, is nonspermicidal and thus cannot offer pregnancy protection when used vaginally. Furthermore, increasing resistance ofTrichomonas vaginalisto 5-nitro-imidazoles is a cause for serious concern. On the other hand, the vaginal spermicide nonoxynol-9 (N-9) does not protect against sexually transmitted diseases and HIV in clinical situations but may in fact increase their incidence due to its nonspecific, surfactant action. We therefore designed dually active, nonsurfactant molecules that were capable of killingTrichomonas vaginalis(both metronidazole-susceptible and -resistant strains) and irreversibly inactivating 100% human sperm at doses that were noncytotoxic to human cervical epithelial (HeLa) cells and vaginal microflora (lactobacilli)in vitro. Anaerobic energy metabolism, cell motility, and defense against reactive oxygen species, which are key to survival of both sperm andTrichomonasin the host after intravaginal inoculation, depend crucially on availability of free thiols. Consequently, molecules were designed with carbodithioic acid moiety as the major pharmacophore, and chemical variations were incorporated to provide high excess of reactive thiols for interacting with accessible thiols on sperm andTrichomonas. We report here thein vitroactivities, structure-activity relationships, and safety profiles of these spermicidal antitrichomonas agents, the most promising of which was more effective than N-9 (the OTC spermicide) in inactivating human sperm and more efficacious than metronidazole in killingTrichomonas vaginalis(including metronidazole-resistant strain). It also significantly reduced the available free thiols on human sperm and inhibited the cytoadherence ofTrichomonason HeLa cells. Experimentallyin vitro, the new compounds appeared to be safer than N-9 for vaginal use.

2015 ◽  
Vol 59 (11) ◽  
pp. 6891-6903 ◽  
Author(s):  
Kuo-Yang Huang ◽  
Fu-Man Ku ◽  
Wei-Hung Cheng ◽  
Chi-Ching Lee ◽  
Po-Jung Huang ◽  
...  

ABSTRACTTrichomonas vaginaliscolonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. Thein vitroeffect of TET on the growth ofT. vaginaliswas examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome ofT. vaginalisin response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistantT. vaginalisisolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we providein vitroevidence that TET is a potential alternative therapeutic choice for treating MTZ-resistantT. vaginalis. The in-depth transcriptomic signatures inT. vaginalisupon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.


2000 ◽  
Vol 38 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Taru Meri ◽  
T. Sakari Jokiranta ◽  
Lauri Suhonen ◽  
Seppo Meri

Trichomonas vaginalis is a globally common sexually transmitted human parasite. Many strains of T. vaginalis from around the world have been described to be resistant to the current drug of choice, metronidazole. However, only a few cases of metronidazole resistance have been reported from Europe. The resistant strains cause prolonged infections which are difficult to treat. T. vaginalis infection also increases the risk for human immunodeficiency virus transmission. We present a practical method for determining the resistance of T. vaginalis to 5-nitroimidazoles. The suggested method was developed by determining the MICs and minimal lethal concentrations (MLCs) of metronidazole and ornidazole forT. vaginalis under various aerobic and anaerobic conditions. Using this assay we have found the first three metronidazole-resistant strains from Finland, although the origin of at least one of the strains seems to be Russia. Analysis of the patient-derived and previously characterized isolates showed that metronidazole-resistant strains were also resistant to ornidazole, and MLCs for all strains tested correlated well with the MICs. The suggested MICs of metronidazole for differentiation of sensitive and resistant isolates are >75 μg/ml in an aerobic 24-h assay and >15 μg/ml in an anaerobic 48-h assay.


2012 ◽  
Vol 56 (8) ◽  
pp. 4146-4153 ◽  
Author(s):  
Zaid Al-Nakeeb ◽  
Ajay Sudan ◽  
Adam R. Jeans ◽  
Lea Gregson ◽  
Joanne Goodwin ◽  
...  

ABSTRACTItraconazole is used for the prevention and treatment of infections caused byAspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. Anin vitromodel of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Nicholas A. Wood ◽  
Krystal Y. Chung ◽  
Amanda M. Blocker ◽  
Nathalia Rodrigues de Almeida ◽  
Martin Conda-Sheridan ◽  
...  

ABSTRACTMembers ofChlamydiaare obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other.Chlamydiaspp. have five uncharacterizedclpgenes,clpX,clpC, twoclpPparalogs, andclpB. In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactiveclpPmutants inChlamydiaspp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detectedin vitro. This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.IMPORTANCEChlamydia trachomatisis the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression inChlamydiaspp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.


Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


Author(s):  
Hajar ZIAEI HEZARJARIBI ◽  
Najmeh NADEALI ◽  
Mahdi FAKHAR ◽  
Masoud SOOSARAEI

Background: Trichomoniasis, due to Trichomonas vaginalis, is one of the most common sexually transmitted parasitic diseases in the world such as Iran. This systematic review aimed to explore the studies evaluating the medicinal herbs with anti- T. vaginalis activity which used in Iran. Methods: Articles published in 4 Persian and 4 English databases were obtained between 2000 and 2015 including Google Scholar, PubMed, Science Direct, Scopus, Magiran, Barakatkns (formerly IranMedex), Elm net, and SID (Scientific Information Database). Studies out of Iran, studies on animal models and articles on other parasite species than T. vaginalis were excluded from this review. Results: Twenty-one articles including in vitro experiments, met our eligibility criteria. Thoroughly, 26 types of plants were examined against T. vaginalis. Medicinal herbs such as Artemisia, Zataria multiflora, and Lavandula angustifolia are remarkably effective on T. vaginalis. As such, use of other parts of these plants in different concentrations and timelines is recommended for future in vivo studies. Conclusion: The present systematic review provides comprehensive and useful information about Iranian medicinal plants with anti-T. vaginalis activity, which would be examined in the future experimental and clinical trials and herbal combination therapy.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Susanne Paukner ◽  
Astrid Gruss ◽  
Jørgen Skov Jensen

ABSTRACT The pleuromutilin antibiotic lefamulin demonstrated in vitro activity against the most relevant bacterial pathogens causing sexually transmitted infections (STI), including Chlamydia trachomatis (MIC 50/90 , 0.02/0.04 mg/liter; n = 15), susceptible and multidrug-resistant Mycoplasma genitalium (MIC range, 0.002 to 0.063 mg/liter; n = 6), and susceptible and resistant Neisseria gonorrhoeae (MIC 50/90 , 0.12/0.5 mg/liter; n = 25). The results suggest that lefamulin could be a promising first-line antibiotic for the treatment of STI, particularly in populations with high rates of resistance to standard-of-care antibiotics.


Author(s):  
Fatemeh Rahmani ◽  
Yahya Ehteshaminia ◽  
Hamid Mohammadi ◽  
Seif Ali Mahdavi

Introduction: Trichomonas vaginalis is a protozoan parasite that infects the urogenital tract of men and women and causes trichomoniasis, a common sexually transmitted disease in both men and women. The infection is often asymptomatic, but it can be accompanied by symptoms such as severe inflammation, itching and burning, foamy discharge and foul-smelling mucus. In one year, 250 million cases of Trichomonas vaginalis were reported worldwide. Material and Methods: In this study, the websites of PubMed, Google Scholar, SID, and Margiran were searched and related articles were reviewed.    Results: Today, the most common treatment for this disease is the use of metronidazole. However, its side effects, which include hematological and neurotoxic effects, cannot be ignored. Because of these side effects, researchers are looking for a suitable replacement for metronidazole in the treatment of trichomoniasis. Researchers' desire to use  herbs can be due to various reasons such as fewer side effects, better patient acceptance, recommendation of traditional medicine, lower prices of herbs and also compatibility with the normal physiological function of the human body. Conclusion: Considering the inhibitory effects of medicinal plants on the growth and proliferation of Trichomonas vaginalis in vitro, it can be concluded that the use of these plants can have many applications in the treatment of trichomoniasis. As a result, by studying more about their advantages and disadvantages, it is possible to make a drug that has higher therapeutic effects with fewer side effects.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Marysabel Méndez Acevedo ◽  
Laura M. Carroll ◽  
Manjari Mukherjee ◽  
Emma Mills ◽  
Lingzi Xiaoli ◽  
...  

ABSTRACT Gram-positive, spore-forming members of the Bacillus cereus group species complex are widespread in natural environments and display various degrees of pathogenicity. Recently, B. cereus group strain Bacillus mycoides Flugge ATCC 21929 was found to represent a novel lineage within the species complex, sharing a relatively low degree of genomic similarity with all B. cereus group genomes (average nucleotide identity [ANI] < 88). ATCC 21929 has been previously associated with the production of a patented antibiotic, antibiotic 60-6 (i.e., cerexin A); however, the virulence potential and growth characteristics of this lineage have never been assessed. Here, we provide an extensive genomic and phenotypic characterization of ATCC 21929, and we assess its pathogenic potential in vitro. ATCC 21929 most closely resembles Bacillus paramycoides NH24A2T (ANI and in silico DNA-DNA hybridization values of 86.70 and 34.10%, respectively). Phenotypically, ATCC 21929 does not possess cytochrome c oxidase activity and is able to grow at a range of temperatures between 15 and 43°C and a range of pH between 6 and 9. At 32°C, ATCC 21929 shows weak production of diarrheal enterotoxin hemolysin BL (Hbl) but no production of nonhemolytic enterotoxin (Nhe); at 37°C, neither Hbl nor Nhe is produced. Additionally, at 37°C, ATCC 21929 does not exhibit cytotoxic effects toward HeLa cells. With regard to fatty acid composition, ATCC 21929 has iso-C17:0 present in highest abundance. Based on the characterization provided here, ATCC 21929T (= PS00077AT = PS00077BT = PSU-0922T = BHPT) represents a novel effective B. cereus group species, which we propose as effective species “Bacillus clarus.” IMPORTANCE The B. cereus group comprises numerous closely related lineages with various degrees of pathogenic potential and industrial relevance. Species-level taxonomic classification of B. cereus group strains is important for risk evaluation and communication but remains challenging. Biochemical and phenotypic assays are often used to assign B. cereus group strains to species but are insufficient for accurate taxonomic classification on a genomic scale. Here, we show that antibiotic-producing ATCC 21929 represents a novel lineage within the B. cereus group that, by all metrics used to delineate prokaryotic species, exemplifies a novel effective species. Furthermore, we show that ATCC 21929 is incapable of producing enterotoxins Hbl and Nhe or exhibiting cytotoxic effects on HeLa cells at human body temperature in vitro. These results provide greater insight into the genomic and phenotypic diversity of the B. cereus group and may be leveraged to inform future public health and food safety efforts.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Priyanka Panwar ◽  
Kepa K. Burusco ◽  
Muna Abubaker ◽  
Holly Matthews ◽  
Andrey Gutnov ◽  
...  

ABSTRACT Drug repositioning offers an effective alternative to de novo drug design to tackle the urgent need for novel antimalarial treatments. The antiamoebic compound emetine dihydrochloride has been identified as a potent in vitro inhibitor of the multidrug-resistant strain K1 of Plasmodium falciparum (50% inhibitory concentration [IC50], 47 nM ± 2.1 nM [mean ± standard deviation]). Dehydroemetine, a synthetic analogue of emetine dihydrochloride, has been reported to have less-cardiotoxic effects than emetine. The structures of two diastereomers of dehydroemetine were modeled on the published emetine binding site on the cryo-electron microscopy (cryo-EM) structure with PDB code 3J7A (P. falciparum 80S ribosome in complex with emetine), and it was found that (−)-R,S-dehydroemetine mimicked the bound pose of emetine more closely than did (−)-S,S-dehydroisoemetine. (−)-R,S-dehydroemetine (IC50 71.03 ± 6.1 nM) was also found to be highly potent against the multidrug-resistant K1 strain of P. falciparum compared with (−)-S,S-dehydroisoemetine (IC50, 2.07 ± 0.26 μM), which loses its potency due to the change of configuration at C-1′. In addition to its effect on the asexual erythrocytic stages of P. falciparum, the compound exhibited gametocidal properties with no cross-resistance against any of the multidrug-resistant strains tested. Drug interaction studies showed (−)-R,S-dehydroemetine to have synergistic antimalarial activity with atovaquone and proguanil. Emetine dihydrochloride and (−)-R,S-dehydroemetine failed to show any inhibition of the hERG potassium channel and displayed activity affecting the mitochondrial membrane potential, indicating a possible multimodal mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document