scholarly journals Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Petra Szili ◽  
Gábor Draskovits ◽  
Tamás Révész ◽  
Ferenc Bogár ◽  
Dávid Balogh ◽  
...  

ABSTRACT Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.

2011 ◽  
Vol 55 (7) ◽  
pp. 3140-3149 ◽  
Author(s):  
Piklu Roy Chowdhury ◽  
Ana Ingold ◽  
Natasha Vanegas ◽  
Elena Martínez ◽  
John Merlino ◽  
...  

ABSTRACTA comparative genetic analysis of 42 clinicalKlebsiella pneumoniaeisolates, resistant to two or more antibiotics belonging to the broad-spectrum β-lactam group, sourced from Sydney, Australia, and three South American countries is presented. The study focuses on the genetic contexts of class 1 integrons, mobilizable genetic elements best known for their role in the rapid evolution of antibiotic resistance among Gram-negative pathogens. It was found that the class 1 integrons in this cohort were located in a number of different genetic contexts with clear regional differences. In Sydney, IS26-associated Tn21-like transposons on IncL/M plasmids contribute greatly to the dispersal of integron-associatedmultiple-drug-resistant (MDR) loci. In contrast, in the South American countries, Tn1696-like transposons on an IncA/C plasmid(s) appeared to be disseminating a characteristic MDR region. A range of mobile genetic elements is clearly being recruited by clinically important mobile class 1 integrons, and these elements appear to be becoming more common with time. This in turn is driving the evolution of complex and laterally mobile MDR units and may further complicate antibiotic therapy.


2015 ◽  
Vol 59 (6) ◽  
pp. 3596-3597 ◽  
Author(s):  
Natália Barth ◽  
Vanessa B. Ribeiro ◽  
Alexandre P. Zavascki

ABSTRACTWe evaluated thein vitroactivity of polymyxin B plus imipenem, meropenem, or tigecycline against six KPC-2-producingEnterobacteriaceaestrains with high MICs for these antimicrobial agents. Polymyxin B with carbapenems, especially meropenem, were the most active combinations forKlebsiella pneumoniaeandEnterobacter cloacaeregardless of the polymyxin B concentration used in the time-kill assay. This combination was also synergistic against twoSerratia marcescensstrains that are intrinsically resistant to polymyxins. Polymyxin B and tigecycline also presented synergistic activity in most experiments.


2011 ◽  
Vol 55 (9) ◽  
pp. 4058-4063 ◽  
Author(s):  
Chen-Hsiang Lee ◽  
Jien-Wei Liu ◽  
Chia-Chin Li ◽  
Chun-Chih Chien ◽  
Ya-Fen Tang ◽  
...  

ABSTRACTIncreasing resistance to quinolones, aminoglycosides, and/or cephamycins in extended-spectrum-β-lactamase (ESBL)-producingEnterobacteriaceaeexacerbates the already limited antibiotic treatment options for infections due to these microbes. In this study, the presence of resistance determinants for these antimicrobial agents was examined by PCR among ESBL-producingKlebsiella pneumoniae(ESBL-KP) isolates that caused bacteremia. Pulsed-field gel electrophoresis was used to differentiate the clonal relationship among the isolates studied. Transferability and the location of the resistance genes were analyzed by conjugation experiments, followed by DNA-DNA hybridization. Among the 94 ESBL-KP isolates studied, 20 isolates of flomoxef-resistant ESBL-KP were identified. They all carried a DHA-1 gene and were genetically diverse. CTX-M genes were found in 18 of the isolates. Among these DHA-1/CTX-M-producingK. pneumoniaeisolates, ISCR1was detected in 13 (72%) isolates,qnrgenes (1qnrAand 17qnrBgenes) were detected in 18 (100%),aac(6′)-Ib-crwas detected in 11 (61%), and 16S rRNA methylase (allarmAgenes) was detected in 14 (78%). Four transconjugants were available for further analysis, andqnrB4,aac(6′)-Ib-cr,armA, andblaDHA-1were all identified on these self-transferableblaCTX-M-carrying plasmids. The genetic environments of ISCR1associated witharmA,blaDHA-1, andqnrB4genes in the four transconjugants were identical. Replicon-type analysis revealed a FIIA plasmid among the four self-transferable plasmids, although the other three were nontypeable. The cotransfer of multiple resistance genes with the ISCR1element-carrying plasmids has a clinical impact and warrants close monitoring and further study.


2018 ◽  
Author(s):  
Petra Szili ◽  
Gabor Draskovits ◽  
Tamas Revesz ◽  
Ferenc Bogar ◽  
David Balogh ◽  
...  

Multi-targeting antibiotics, i.e. single compounds capable to inhibit two or more bacterial targets offer a promising therapeutic strategy, but information on resistance evolution against such drugs is scarce. Gepotidacin is an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an over 2000-fold increment in resistance, while individually none of these mutations affect resistance significantly. Alarmingly, gepotidacin-resistant strains are found to be as virulent as the wild-type K. pneumoniae strain in a murine model, and extensive cross-resistance was demonstrated between gepotidacin and ciprofloxacin, a fluoroquinolone antibiotic widely employed in clinical practice. This suggests that numerous fluoroquinolone-resistant pathogenic isolates carry mutations which would promote the evolution of clinically significant resistance against gepotidacin in the future. We conclude that prolonged antibiotic usage could select for mutations that serve as stepping-stones towards resistance against antimicrobial compounds still under development. More generally, our research indicates that even balanced multi-targeting antibiotics are prone to resistance evolution.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Hessel van der Weide ◽  
Unai Cossío ◽  
Raquel Gracia ◽  
Yvonne M. te Welscher ◽  
Marian T. ten Kate ◽  
...  

ABSTRACT Antimicrobial peptides (AMPs) have seen limited clinical use as antimicrobial agents, largely due to issues relating to toxicity, short biological half-life, and lack of efficacy against Gram-negative bacteria. However, the development of novel AMP-nanomedicines, i.e., AMPs entrapped in nanoparticles, has the potential to ameliorate these clinical problems. The authors investigated two novel nanomedicines based on AA139, an AMP currently in development for the treatment of multidrug-resistant Gram-negative infections. AA139 was entrapped in polymeric nanoparticles (PNPs) or lipid-core micelles (MCLs). The antimicrobial activity of AA139-PNP and AA139-MCL was determined in vitro. The biodistribution and limiting doses of AA139-nanomedicines were determined in uninfected rats via endotracheal aerosolization. The early bacterial killing activity of the AA139-nanomedicines in infected lungs was assessed in a rat model of pneumonia-septicemia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae. In this model, the therapeutic efficacy was determined by once-daily (q24h) administration over 10 days. Both AA139-nanomedicines showed equivalent in vitro antimicrobial activities (similar to free AA139). In uninfected rats, they exhibited longer residence times in the lungs than free AA139 (∼20% longer for AA139-PNP and ∼80% longer for AA139-MCL), as well as reduced toxicity, enabling a higher limiting dose. In rats with pneumonia-septicemia, both AA139-nanomedicines showed significantly improved therapeutic efficacy in terms of an extended rat survival time, although survival of all rats was not achieved. These results demonstrate potential advantages that can be achieved using AMP-nanomedicines. AA139-PNP and AA139-MCL may be promising novel therapeutic agents for the treatment of patients suffering from multidrug-resistant Gram-negative pneumonia-septicemia.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Sibylle H. Lob ◽  
Meredith A. Hackel ◽  
Krystyna M. Kazmierczak ◽  
Katherine Young ◽  
Mary R. Motyl ◽  
...  

ABSTRACT Relebactam (formerly MK-7655) is an inhibitor of class A and C β-lactamases, including Klebsiella pneumoniae carbapenemase (KPC), and is currently in clinical development in combination with imipenem-cilastatin. Using Clinical and Laboratory Standards Institute (CLSI)-defined broth microdilution methodology, we evaluated the in vitro activities of imipenem-relebactam, imipenem, and seven routinely tested parenteral antimicrobial agents against Gram-negative ESKAPE pathogens (including Klebsiella pneumoniae, n = 689; Acinetobacter baumannii, n = 72; Pseudomonas aeruginosa, n = 845; and Enterobacter spp., n = 399) submitted by 21 clinical laboratories in the United States in 2015 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Relebactam was tested at a fixed concentration of 4 μg/ml in combination with doubling dilutions of imipenem. Imipenem-relebactam MICs were interpreted using CLSI imipenem breakpoints. The respective rates of susceptibility to imipenem-relebactam and imipenem were 94.2% (796/845) and 70.3% (594/845) for P. aeruginosa, 99.0% (682/689) and 96.1% (662/689) for K. pneumoniae, and 100% (399/399) and 98.0% (391/399) for Enterobacter spp. Relebactam restored imipenem susceptibility to 80.5% (202/251), 74.1% (20/27), and 100% (8/8) of isolates of imipenem-nonsusceptible P. aeruginosa, K. pneumoniae, and Enterobacter spp. Relebactam did not increase the number of isolates of Acinetobacter spp. susceptible to imipenem, and the rates of resistance to all of the agents tested against this pathogen were >30%. Further development of imipenem-relebactam is warranted given the demonstrated ability of relebactam to restore the activity of imipenem against current clinical isolates of Enterobacteriaceae and P. aeruginosa that are nonsusceptible to carbapenems and its potential as a therapy for treating patients with antimicrobial-resistant Gram-negative infections.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Marla J. Giddins ◽  
Nenad Macesic ◽  
Medini K. Annavajhala ◽  
Stephania Stump ◽  
Sabrina Khan ◽  
...  

ABSTRACT Ceftazidime-avibactam (CAZ-AVI) is a promising novel treatment for infections caused by carbapenem-resistant Enterobacteriaceae (CRE). Despite improved treatment outcomes compared to those achieved with aminoglycoside- and colistin-based regimens, the rapid evolution of CAZ-AVI resistance during treatment has previously been reported in Klebsiella pneumoniae sequence type 258 (ST258) bla KPC-3 -harboring isolates. Here, we report the stepwise evolution and isolation of two phenotypically distinct CAZ-AVI-resistant Klebsiella pneumoniae isolates from a patient with pancreatitis. All susceptible ( n = 3) and resistant ( n = 5) isolates were of the ST307 clonal background, a rapidly emerging clone. Taking advantage of short-read Illumina and long-read Oxford Nanopore sequencing and full-length assembly of the core chromosome and plasmids, we demonstrate that CAZ-AVI resistance first occurred through a 532G → T bla KPC-2 point mutation in bla KPC-2 (D179Y protein substitution) following only 12 days of CAZ-AVI exposure. While subsequent isolates exhibited substantially decreased meropenem (MEM) MICs (≤2 μg/ml), later cultures demonstrated a second CAZ-AVI resistance phenotype with a lower CAZ-AVI MIC (12 μg/ml) but also MEM resistance (MIC > 128 μg/ml). These CAZ-AVI- and MEM-resistant isolates showed evidence of multiple genomic adaptations, mainly through insertions and deletions. This included amplification and transposition of wild-type bla KPC-2 into a novel plasmid, an IS 1 insertion upstream of ompK36 , and disruption of the rfb gene locus in these isolates. Our findings illustrate the potential of CAZ-AVI resistance to emerge in non- K. pneumoniae ST258 clonal backgrounds and alternative bla KPC variants. These results raise concerns about the strong selective pressures incurred by novel carbapenemase inhibitors, such as avibactam, on isolates previously considered invulnerable to CAZ-AVI resistance. There is an urgent need to further characterize non-KPC-mediated modes of carbapenem resistance and the intrinsic bacterial factors that facilitate the rapid emergence of resistance during treatment.


2019 ◽  
Vol 8 (44) ◽  
Author(s):  
Ryan W. Richardson ◽  
Lauren Lessor ◽  
Chandler O’Leary ◽  
Jason Gill ◽  
Mei Liu

Klebsiella pneumoniae is an opportunistic pathogen that is the cause of several hospital-acquired infections. Bacteriophages that target this bacterium could be used therapeutically as novel antimicrobial agents. Here, we present the complete genome sequence of the T1-like K. pneumoniae phage Sanco.


2012 ◽  
Vol 56 (10) ◽  
pp. 5016-5022 ◽  
Author(s):  
Chun-Ming Lee ◽  
Chun-Hsing Liao ◽  
Wen-Sen Lee ◽  
Yung-Ching Liu ◽  
Jung-Jung Mu ◽  
...  

ABSTRACTFrom June to September 2011, a total of 305 ertapenem-nonsusceptibleEnterobacteriaceaeisolates (MICs of ertapenem ≥ 1 μg/ml) were collected from 11 hospitals in different parts of Taiwan. The MICs of 12 antimicrobial agents against these isolates were determined using the broth microdilution method, and genes for carbapenemases were detected using PCR. Genotypes of isolates possessing carbapenemase genes were identified by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. The ertapenem-nonsusceptibleEnterobacteriaceaeisolates includedKlebsiella pneumoniae(n= 219),Escherichia coli(n= 64),Enterobacter cloacae(n= 15), and other species (n= 7). Seven (2.3%) of the ertapenem-nonsusceptibleEnterobacteriaceaeisolates exhibited colistin MICs of >4 μg/ml, and 24 (7.9%) were not susceptible to tigecycline (MICs > 2 μg/ml). A total of 29 (9.5%) isolates carried genes encoding carbapenemases, namely,K. pneumoniaecarbapenemase-2 (KPC-2) in 16 (7.3%) isolates ofK. pneumoniae(KPC-2-KP) and IMP-8 in 5 (2.3%) isolates ofK. pneumoniae, 5 (33.3%) isolates ofE. cloacae, 1 isolate ofE. coli, 1 isolate ofKlebsiella oxytoca, and one isolate ofCitrobacter freundii. The 16 KPC-2-KP isolates were isolated from patients at four different hospitals in northern Taiwan. All 16 of the KPC-2-KP isolates were susceptible to amikacin and colistin and had a similar pulsotype (pulsotype 1) and the same sequence type (sequence type 11). Infections due to KPC-2-KP mainly occurred in severely ill patients in the intensive care unit (n= 14, 88%). Four patients with infections due to KPC-2-KP died within 14 days of hospitalization. The findings are the first to demonstrate intrahospital and interhospital dissemination of KPC-2-KP in northern Taiwan.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Xu ◽  
Zhongliang Zhu ◽  
Yanmin Chen ◽  
Weizhong Wang ◽  
Fang He

The emergence and prevalence of tigecycline-resistant Klebsiella pneumoniae have seriously compromised the effectiveness of antimicrobial agents in the treatment of infections. To explore the role of the plasmid-borne tet(A) gene in tigecycline resistance in carbapenem-resistant K. pneumoniae (CRKP), a total of 63 CRKP isolates were collected from a tertiary hospital in Hangzhou, China. The minimum inhibitory concentration (MIC) of tigecycline, mutation rate of tet(A) gene, genetic surroundings of tet(A)-carrying transmissible plasmid and the contribution of tet(A) mutation to tigecycline resistance were analyzed using antimicrobial susceptibility test, whole-genome sequencing, tigecycline resistance evolution experiment, and plasmid conjugation experiment. Our results showed that 52.4% (33 isolates) of the test isolates carried the tet(A) gene; among them, 75.8% (25 isolates) exhibited a tigecycline non-susceptible phenotype (MIC = 4 mg/L). Three clonal groups (cluster I, cluster II, and cluster III) were identified in these tet(A)-bearing isolates. All 17 isolates belonged to serotype KL21 (cluster I), which differed by only 13 SNPs, suggesting a clonal spread of tet(A)-positive ST11 K. pneumoniae with serotype KL21 occurred in the sampling hospital. The induction of tigecycline resistance experiments showed that 71.4% of strains evolved tet(A) mutations and developed a high-level tigecycline resistance. Eight amino acid substitutions were identified in these mutants. The most common amino acid substitution was A370V, followed by S251A and G300E. Twelve isolates carrying tet(A) mutants succeeded in the filter mating experiment with a conjugation efficiency of 10–3–10–8. Tigecycline MICs in E. coli EC600 transconjugants with a mutated tet(A) were 2 to 8-fold higher than those in E. coli EC600 transconjugants with a wild-type tet(A). One ColRNAI/IncFII type and two IncFII type tet(A)-bearing conjugative plasmids were identified in this study, including a class 1 integron containing multiple antibiotic resistance genes, i.e., tet(A), qnrS1, blaLAP–2, catA2, sul2, and dfrA14. Our study revealed the wide-spread situation of plasmid-borne tet(A) gene in clinical CRKP, and mutation of tet(A) is a potential driven force that lead to tigecycline resistance.


Sign in / Sign up

Export Citation Format

Share Document