scholarly journals E. coli GyrA Tower Domain Interacts with QnrB1 Loop B and Plays an Important Role in QnrB1 Protection from Quinolone Inhibition

Author(s):  
Chunhui Chen ◽  
Yin Wang ◽  
Hidemasa Nakaminami ◽  
Eu Suk Kim ◽  
George A. Jacoby ◽  
...  

The Qnr pentapeptide repeat proteins interact with DNA gyrase and protect it from quinolone inhibition. The two external loops, particularly the larger loop B, of Qnr proteins are essential for quinolone protection of DNA gyrase. The specific QnrB1 interaction sites on DNA gyrase are not known. In this study, we investigated the interaction between GyrA and QnrB1 using site-specific photo crosslinking of QnrB1 loop B combined with mass spectrometry. We found that amino acid residues 286-298 on the Tower domain of GyrA interact with QnrB1 and play a key role in QnrB1 protection of gyrase from quinolone inhibition. Alanine replacement of arginine at residue 293 and a small deletion of amino acids 286-289 of GyrA resulted in a decrease in the QnrB1-mediated increase in quinolone MICs and also abolished the QnrB1 protection of purified DNA gyrase from ciprofloxacin inhibition.

2019 ◽  
Vol 8 (1) ◽  
pp. 24-31
Author(s):  
Chol-Jin Kim ◽  
Sunll Choe ◽  
Kum-Chol Ri ◽  
Chol-Ho Kim ◽  
Hyon-Gwang Li ◽  
...  

Background: The focus of this study was the selection of a single chain variable fragment antibody (scFv) against subtilisin BRC, a fibrinolytic enzyme using phage display, and to characterize the interaction between the antibody and subtilisin BRC. Methods: The subtilisin BRC-specific phage clones were selected using Griffin.1 scFv phage library and sequenced. The gene of subtilisin BRC-specific scFv (scFv-BRC) from selected phage clone was expressed in E. coli and scFv-BRC was characterized. Molecular modeling of the three-dimensional (3D) structures of scFv-BRC was performed using MODELLER 9.19 modeling software and assessed by PROCHEK. Molecular docking of subtilisin BRC with scFv-BRC was carried out using PATCHDOCK. Results: The size of scFv-BRC gene is 635bp and it consists of 54bp of heavy chain region (VH), 336bp of light chain region (VL), 45bp of a linker. scFv-BRC was actively expressed by E. coli expression vector pET28a-scFv in E. coli BL21 (DE3), and the amount of expressed scFv-BRC was about 50 mg/L. Its molecular weight is ~26kDa. The CDR domain of scFv-BRC consists of 6 amino acids in CDR L1, 3 amino acids in CDR L2 and 9 amino acids in CDR L3. Docking results of subtilisin BRC and scFv-BRC showed global energy of - 56.29 kJ/mol. Furthermore, the results showed that amino acid residues in subtilisin BRC for binding with scFv-BRC are Tyr6, Ser182, Ser204, and Gln206. Conclusion: scFv against subtilisin BRC selected using phage display showed relatively strong binding energy with subtilisin BRC. The amino acid residues in subtilisin BRC for binding with scFv-BRC are not relevant to that in subtilisin BRC for binding with its substrates. These results suggested that scFv-BRC can be used as a ligand for detection and affinity purification of subtilisin BRC.


1998 ◽  
Vol 64 (7) ◽  
pp. 2335-2340 ◽  
Author(s):  
Ping Chen ◽  
Jan Novak ◽  
Marion Kirk ◽  
Stephen Barnes ◽  
FengXia Qi ◽  
...  

ABSTRACT Mutacin II, elaborated by group II Streptococcus mutans, is a ribosomally synthesized and posttranslationally modified polypeptide antibiotic containing unusual thioether and didehydro amino acids. To ascertain the role of specific amino acid residues in mutacin II antimicrobial activity, we developed a streptococcal expression system that facilitates the replacement of themutA gene with a single copy of a mutated variant gene. As a result, variants of mutacin II can be designed and expressed. The system was tested by constructing the following mutant peptides: ΔN1, V7A, P9A, T10A, T10S, C15A, C26A, and C27A. All of these mutacin II variants except ΔN1 and T10A, which were not secreted, were isolated, and their identities were verified by mass spectrometry. Variants P9A, C15A, C26A, and C27A failed to exert antimicrobial activity. Because the P9A and T10A variants comprise the “hinge” region of mutacin II, these observations suggest that in addition to the thioether and didehydro amino acids, the hinge region is essential for biological activity and biosynthesis or export of the peptide. Tandem mass spectrometry of the N-terminal part of the wild-type molecule and its C15A variant confirmed that the threonine at position 10 is dehydrated and present as a didehydrobutyrine residue. This analysis of the active T10S variant further suggested that a didehydro amino acid at this position is specific for antimicrobial activity and that the biosynthetic machinery does not discriminate between threonine and serine. In contrast, the lack of production of mutacin variants with alanine substituted for threonine at position 10, as well as the deletion of asparagine at the N terminus (ΔN1), indicates that specific residues in the propeptide may be crucial for certain steps in the biosynthetic pathway of this lantibiotic.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianhua Cao ◽  
Benjamin Balluff ◽  
Martijn Arts ◽  
Ludwig J. Dubois ◽  
Luc J. C. van Loon ◽  
...  

Abstract Background Metabolic reprogramming is a common phenomenon in tumorigenesis and tumor progression. Amino acids are important mediators in cancer metabolism, and their kinetics in tumor tissue are far from being understood completely. Mass spectrometry imaging is capable to spatiotemporally trace important endogenous metabolites in biological tissue specimens. In this research, we studied L-[ring-13C6]-labeled phenylalanine and tyrosine kinetics in a human non-small cell lung carcinoma (NSCLC) xenografted mouse model using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI). Methods We investigated the L-[ring-13C6]-Phenylalanine (13C6-Phe) and L-[ring-13C6]-Tyrosine (13C6-Tyr) kinetics at 10 min (n = 4), 30 min (n = 3), and 60 min (n = 4) after tracer injection and sham-treated group (n = 3) at 10 min in mouse-xenograft lung tumor tissues by MALDI-FTICR-MSI. Results The dynamic changes in the spatial distributions of 19 out of 20 standard amino acids are observed in the tumor tissue. The highest abundance of 13C6-Phe was detected in tumor tissue at 10 min after tracer injection and decreased progressively over time. The overall enrichment of 13C6-Tyr showed a delayed temporal trend compared to 13C6-Phe in tumor caused by the Phe-to-Tyr conversion process. Specifically, 13C6-Phe and 13C6-Tyr showed higher abundances in viable tumor regions compared to non-viable regions. Conclusions We demonstrated the spatiotemporal intra-tumoral distribution of the essential aromatic amino acid 13C6-Phe and its de-novo synthesized metabolite 13C6-Tyr by MALDI-FTICR-MSI. Our results explore for the first time local phenylalanine metabolism in the context of cancer tissue morphology. This opens a new way to understand amino acid metabolism within the tumor and its microenvironment.


1990 ◽  
Vol 265 (24) ◽  
pp. 14450-14456 ◽  
Author(s):  
W.A. Palmisano ◽  
C.L. Treviño ◽  
M.T. Henzl

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2009 ◽  
Vol 633 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Mostafa Pournamdari ◽  
Ahmed Saadi ◽  
Elizabeth Ellis ◽  
Ruth Andrew ◽  
Brian Walker ◽  
...  

2015 ◽  
Vol 7 (18) ◽  
pp. 7574-7581 ◽  
Author(s):  
Magdalena M. Dziągwa-Becker ◽  
Jose M. Marin Ramos ◽  
Jakub K. Topolski ◽  
Wiesław A. Oleszek

Free amino acid determination in plants by LC-MS/MS.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


Sign in / Sign up

Export Citation Format

Share Document