scholarly journals Combination of Tenofovir and Emtricitabine with Efavirenz Does Not Moderate Inhibitory Effect of Efavirenz on Mitochondrial Function and Cholesterol Biosynthesis in Human T Lymphoblastoid Cell Line

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Min Li ◽  
Anuoluwapo Sopeyin ◽  
Elijah Paintsil

ABSTRACT Efavirenz (EFV), the most popular nonnucleoside reverse transcriptase inhibitor, has been associated with mitochondrial dysfunction in most in vitro studies. However, in real life the prevalence of EFV-induced mitochondrial toxicity is relatively low. We hypothesized that the agents given in combination with EFV moderate the effect of EFV on mitochondrial function. To test this hypothesis, we cultured a human T lymphoblastoid cell line (CEM cells) with EFV alone and in combination with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) to investigate the effects on mitochondrial respiration and function and cholesterol biosynthesis. There was a statistically significant concentration- and time-dependent apoptosis, reduction in mitochondrial membrane potential, and increase in production of reactive oxygen species in cells treated with either EVF alone or in combination with TDF plus FTC. Compared to dimethyl sulfoxide-treated cells, EFV-treated cells had significant reduction in oxygen consumption rate contributed by basal mitochondrial respiration and decreased protein expression of electron transport chain complexes (CI, CII, and CIV). Treatment with EFV resulted in a decrease in mitochondrial DNA content and perturbation of more coding genes (n = 13); among these were 11 genes associated with lipid or cholesterol biosynthesis. Our findings support the growing body of knowledge on the effects of EFV on mitochondrial respiration and function and cholesterol biosynthesis. Interestingly, combining TDF and FTC with EFV did not alter the effects of EFV on mitochondrial respiration and function and cholesterol biosynthesis. The gap between the prevalence of EFV-induced mitochondrial toxicity in in vitro and in vivo studies could be due to individual differences in the pharmacokinetics of EFV.

2018 ◽  
Author(s):  
Min Li ◽  
Anuoluwapo Sopeyin ◽  
Elijah Paintsil

ABSTRACTEfavirenz (EFV), the most popular non-nucleoside reverse transcriptase inhibitor, has been associated with mitochondrial dysfunction in most in vitro studies. However, in real life the prevalence of EFV-induced mitochondrial toxicity is relatively low. We hypothesized that the agents given in combination with EFV might moderate the effect of EFV on mitochondrial function. To test this hypothesis, we cultured human T lymphoblastoid cell line (CEM cells) with EFV alone and in combination with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) to investigate the effects on mitochondrial respiration and function and cholesterol biosynthesis.There was a statistically significant concentration- and time-dependent apoptosis, reduction in mitochondrial membrane potential (ΔΨ), and increase production of reactive oxygen species (ROS) in cells treated with either EVF alone or in combination with TDF/FTC. EFV treated cells compared to DMSO treated cells had significant reduction in oxygen consumption rate (OCR) contributed by mitochondrial respiration, ATP production-linked respiration, and spare respiratory capacity (SRC). Treatment with EFV resulted in a decrease in mitochondrial DNA content, and perturbation of more coding genes (n=13); among these were 11 genes associated with lipid or cholesterol biosynthesis. Our findings support the growing body of knowledge on the effects of EFV on mitochondrial respiration and function and cholesterol biosynthesis.Interestingly, combining TDF/FTC with EFV did not alter the effects of EFV on mitochondrial respiration and function and cholesterol biosynthesis. The gap between the prevalence of EFV-induced mitochondrial toxicity in vitro and in vivo studies may be explained by individual differences in the pharmacokinetic of EFV.


2020 ◽  
Vol 183 ◽  
pp. 104948
Author(s):  
Min Li ◽  
Lei Zhou ◽  
Harold G. Dorsey ◽  
Charles Musoff ◽  
Dereck Amakye Jnr ◽  
...  

2019 ◽  
Vol 316 (2) ◽  
pp. E293-E304 ◽  
Author(s):  
Simon T. Bond ◽  
Sarah C. Moody ◽  
Yingying Liu ◽  
Mete Civelek ◽  
Claudio J. Villanueva ◽  
...  

Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.


2021 ◽  
Vol 249 (2) ◽  
pp. 113-124
Author(s):  
Stephen P Ashcroft ◽  
Gareth Fletcher ◽  
Ashleigh M Philp ◽  
Carl Jenkinson ◽  
Shatarupa Das ◽  
...  

Vitamin D deficiency is associated with symptoms of skeletal muscle myopathy including muscle weakness and fatigue. Recently, vitamin D-related metabolites have been linked to the maintenance of mitochondrial function within skeletal muscle. However, current evidence is limited to in vitro models and the effects of diet-induced vitamin D deficiency upon skeletal muscle mitochondrial function in vivo have received little attention. In order to examine the role of vitamin D in the maintenance of mitochondrial function in vivo, we utilised an established model of diet-induced vitamin D deficiency in C57BL/6J mice. Mice were either fed a control diet (2200 IU/kg i.e. vitamin D replete) or a vitamin D-deplete (0 IU/kg) diet for periods of 1, 2 and 3 months. Gastrocnemius muscle mitochondrial function and ADP sensitivity were assessed via high-resolution respirometry and mitochondrial protein content via immunoblotting. As a result of 3 months of diet-induced vitamin D deficiency, respiration supported via complex I + II (CI + IIP) and the electron transport chain (ETC) were 35 and 37% lower when compared to vitamin D-replete mice (P < 0.05). Despite functional alterations, citrate synthase activity, AMPK phosphorylation, mitofilin, OPA1 and ETC subunit protein content remained unchanged in response to dietary intervention (P > 0.05). In conclusion, we report that 3 months of diet-induced vitamin D deficiency reduced skeletal muscle mitochondrial respiration in C57BL/6J mice. Our data, when combined with previous in vitro observations, suggest that vitamin D-mediated regulation of mitochondrial function may underlie the exacerbated muscle fatigue and performance deficits observed during vitamin D deficiency.


Blood ◽  
2021 ◽  
Author(s):  
Yajie Shen ◽  
Jingqi Zhou ◽  
Kui Nie ◽  
Shuhua Cheng ◽  
Zhengming Chen ◽  
...  

Although oncogenicity of the stem cell regulator SOX9 has been implicated in many solid tumors, its role in lymphomagenesis remains largely unknown. In this study, we showed that SOX9 is overexpressed preferentially in a subset of diffuse large B-cell lymphomas (DLBCL) harboring IGH-BCL2 translocations. SOX9 positivity in DLBCL correlates with advanced stage of disease. Silencing of SOX9 decreased cell proliferation, induced G1/S arrest and increased apoptosis of DLBCL cells, both in vitro and in vivo. Whole transcriptome analysis and CHIP-seq assays identified DHCR24, a terminal enzyme in cholesterol biosynthesis, as a direct target of SOX9, which promotes cholesterol synthesis by increasing DHCR24 expression. Enforced expression of DHCR24 was capable of rescuing the phenotypes associated with SOX9 knockdown in DLBCL cells. In DLBCL cell line xenograft models, SOX9 knockdown resulted in lower DHCR24 level, reduced cholesterol content and decreased tumor load. Pharmacological inhibition of cholesterol synthesis also inhibited DLBCL xenograft tumorigenesis, the reduction of which is more pronounced in DLBCL cell line with higher SOX9 expression, suggesting that it may be addicted to cholesterol. In summary, our study demonstrates that SOX9 can drive lymphomagenesis through DHCR24 and the cholesterol biosynthesis pathway. This SOX9-DHCR24-cholesterol biosynthesis axis may serve as a novel treatment target for DLBCL.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Friedman ◽  
Carmen Corciulo ◽  
Cristina M. Castro ◽  
Bruce N. Cronstein

AbstractAutophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.


Sign in / Sign up

Export Citation Format

Share Document