scholarly journals Transcriptional Profiles of the Response to Ketoconazole and Amphotericin B in Trichophyton rubrum

2006 ◽  
Vol 51 (1) ◽  
pp. 144-153 ◽  
Author(s):  
Lu Yu ◽  
Wenliang Zhang ◽  
Lingling Wang ◽  
Jian Yang ◽  
Tao Liu ◽  
...  

ABSTRACT Trichophyton rubrum is a pathogenic filamentous fungus of increasing medical concern. Two antifungal agents, ketoconazole (KTC) and amphotericin B (AMB), have specific activity against dermatophytes. To identify the mechanisms of action of KTC and AMB against T. rubrum, a cDNA microarray was constructed from the expressed sequence tags of the cDNA library from different developmental stages, and transcriptional profiles of the responses to KTC and AMB were determined. T. rubrum was exposed to subinhibitory concentrations of KTC and AMB for 12 h, and microarray analysis was used to examine gene transcription. KTC exposure induced transcription of genes involved in lipid, fatty acid, and sterol metabolism, including ERG11, ERG3, ERG25, ERG6, ERG26, ERG24, ERG4, CPO, INO1, DW700960, CPR, DW696584, DW406350, and ATG15. KTC also increased transcription of the multidrug resistance gene ABC1. AMB exposure increased transcription of genes involved in lipid, fatty acid, and sterol metabolism (DW696584, EB801458, IVD, DW694010, DW688343, DW684992), membrane transport (Git1, DW706156, DW684040, DMT, DW406136, CCH1, DW710650), and stress-related responses (HSP70, HSP104, GSS, AOX, EB801455, EB801702, TDH1, UBI4) but reduced transcription of genes involved in maintenance of cell wall integrity and signal transduction pathways (FKS1, SUN4, DW699324, GAS1, DW681613, SPS1, DW703091, STE7, DW703091, DW695308) and some ribosomal proteins. This is the first report of the use of microarray analysis to determine the effects of drug action in T. rubrum.

Author(s):  
Selfela Restu Adina ◽  
Antonius Suwanto ◽  
Anja Meryandini ◽  
Esti Puspitasari

Abstract Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathrin Beyer ◽  
Stein Atle Lie ◽  
Bodil Bjørndal ◽  
Rolf K. Berge ◽  
Asbjørn Svardal ◽  
...  

AbstractRheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases with several pathogenic pathways in common. Evidence supports an association between the diseases, but the exact underlying mechanisms behind the connection are still under investigation. Lipid, fatty acid (FA) and metabolic profile alterations have been associated with several chronic inflammatory diseases, including RA and periodontitis. Mitochondria have a central role in regulating cellular bioenergetic and whole-body metabolic homeostasis, and mitochondrial dysfunction has been proposed as a possible link between the two disorders. The aim of this cross-sectional study was to explore whole-blood FA, serum lipid composition, and carnitine- and choline derivatives in 78 RA outpatients with different degrees of periodontal inflammation. The main findings were alterations in lipid, FA, and carnitine- and choline derivative profiles. More specifically, higher total FA and total cholesterol concentrations were found in active RA. Elevated phospholipid concentrations with concomitant lower choline, elevated medium-chain acylcarnitines (MC-AC), and decreased ratios of MC-AC and long-chain (LC)-AC were associated with prednisolone medication. This may indicate an altered mitochondrial function in relation to the increased inflammatory status in RA disease. Our findings may support the need for interdisciplinary collaboration within the field of medicine and dentistry in patient stratification to improve personalized treatment. Longitudinal studies should be conducted to further assess the potential impact of mitochondrial dysfunction on RA and periodontitis.


1983 ◽  
Vol 214 (2) ◽  
pp. 443-449 ◽  
Author(s):  
P Grimaldi ◽  
C Forest ◽  
P Poli ◽  
R Negrel ◽  
G Ailhaud

ob17 cells convert into adipose-like cells when maintained in the presence of physiological concentrations of insulin and tri-iodothyronine. After this conversion, insulin removal from differentiated ob17 cells gives within 24-48 h a large decrease in fatty acid synthetase, glycerol 3-phosphate dehydrogenase and acid:CoA ligase activities, as well as in the rate of fatty acid synthesis determined by [14C]acetate incorporation into lipids. All parameters are restored by insulin addition to initial values within 24-48 h. Dose-response curves of insulin on the restoration of glycerol 3-phosphate dehydrogenase activity and of fatty acid synthesis give half-maximally effective concentrations close to 1 nM, in agreement with the affinity for insulin of the insulin receptors previously characterized in these cells. Immunotitration experiments indicate that the changes in the specific activity of fatty acid synthetase are due to parallel changes in the cellular enzyme content. Therefore the ob17 cell line should be a useful model to study the long-term effects of insulin on the modulation of lipid synthesis in adipose cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.


1982 ◽  
Vol 208 (3) ◽  
pp. 611-618 ◽  
Author(s):  
M R Grigor ◽  
A Geursen ◽  
M J Sneyd ◽  
S M Warren

1. The rate of mammary-gland lipogenesis measured in vivo from 3H2O was suppressed after decreasing the milk demand by decreasing the number of pups from ten to two or three, as well as by giving diets containing lipid [Grigor & Warren (1980) Biochem. J. 188, 61-65]. 2. The specific activities of the lipogenic enzymes fatty acid synthase, glucose 6-phosphate dehydrogenase and ‘malic’ enzyme increased between 6- and 10-fold in the mammary gland and between 2- and 3-fold in the livers during the first 10 days of lactation. The increases in specific activity coupled with the doubling of liver mass which occurred during pregnancy and lactation resulted in considerable differences in total liver activities when compared with virgin animals. 3. Although consumption of a diet containing 20% peanut oil suppressed the activities of the three lipogenic enzymes in the livers, only the ‘malic’ enzyme was affected in the mammary glands. 4. In contrast, decreased milk demand did not affect the specific activities of any of the liver enzymes, whereas it resulted in suppression of all three lipogenic enzymes of the mammary glands. There was no effect on either the cytoplasmic malate dehydrogenase or the lactate dehydrogenase of the mammary gland. 5. In all the experiments performed, the activity of the fatty acid synthase correlated with the amount of material precipitated by the rabbit antibody raised against rat fatty acid synthase.


1986 ◽  
Vol 250 (3) ◽  
pp. H351-H359 ◽  
Author(s):  
G. D. Lopaschuk ◽  
C. A. Hansen ◽  
J. R. Neely

Palmitate metabolism was determined in isolated perfused hearts containing elevated levels of coenzyme A (CoA). CoA levels were elevated by perfusing hearts with Krebs-Henseleit buffer containing 0.1 mM cysteine, 0.2 mM dithiothreitol, 15 microM pantothenic acid, and no energy substrate. After 45 min, CoA levels had increased from 537 +/- 14 to 818 +/- 44 nmol/g dry wt. When these hearts containing high CoA were subsequently perfused as working hearts with buffer containing 11 mM glucose and 1.2 mM palmitate, long chain acyl CoA levels increased (94 +/- 5-305 +/- 6 nmol/g dry wt). Oxidation of exogenous palmitate (as measured by 14CO2 production from [U-14C]palmitate) was significantly depressed in hearts containing elevated CoA levels. This apparent reduction in fatty acid oxidation was not due to increased glucose or glycogen utilization. When the concentration of palmitate was decreased to 0.4 mM, acyl CoA levels increased much less, and the apparent rate of [14C]palmitate oxidation was unaffected by elevated CoA. Hearts containing high CoA also incorporated [14C]palmitate into triacylglycerols to a greater extent than did control hearts. To determine whether the apparent decrease in exogenous palmitate oxidation resulted from an increased utilization of unlabeled endogenous triacylglycerol fatty acid, [14C]palmitate specific activity was measured in myocardial acylcarnitine. The specific activity of this pool of fatty acid was similar in both control hearts and hearts containing elevated CoA. Thus dilution of the total cellular [14C]acyl carnitine by triacylglycerol hydrolysis was not sufficient to account for the decrease in [U-14C]palmitate oxidation. The possibility that a small pool of rapidly turning over acyl carnitine becomes dilated is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document