Identification of a novel metallo-β-lactamase, VAM-1, in a foodborne Vibrio alginolyticus isolate from China

Author(s):  
Qipeng Cheng ◽  
Zhiwei Zheng ◽  
Lianwei Ye ◽  
Sheng Chen

A multidrug-resistant Vibrio alginolyticus isolate recovered from a shrimp sample with reduced carbapenem susceptibility produced a novel metallo-β-lactamase, VAM-1. That carbapenemase shared 67% to 70% amino acid identity with several VMB family subclass B1 MBLs which were recently reported among some marine bacteria including Vibrio , Glaciecola and Thalassomonas . The bla VAM-1 gene was located in a novel conjugative plasmid, namely pC1579 and multiple copies of bla VAM-1 via an unusual mechanism of gene amplification were detected in pC1579. These findings underline the emergence of marine organisms acting as natural reservoirs for MBL genes and the importance of continuous bacterial antibiotic resistance surveillance.

2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
C Torresi ◽  
F Granberg ◽  
L Bertolotti ◽  
A Oggiano ◽  
B Colitti ◽  
...  

Abstract In order to assess the molecular epidemiology of African swine fever (ASF) in Sardinia, we analyzed a wide range of isolates from wild and domestic pigs over a 31-year period (1978–2009) by genotyping sequence data from the genes encoding the p54 and the p72 proteins and the CVR. On this basis, the analysis of the B602L gene revealed a minor difference, placing the Sardinian isolates into two clusters according to their temporal distribution. As an extension of this study, in order to achieve a higher level of discrimination, three further variable genome regions, namely p30, CD2v, and I73R/I329L, of a large number of isolates collected from outbreaks in the years 2002–14 have been investigated. Sequence analysis of the CD2v region revealed a temporal subdivision of the viruses into two subgroups. These data, together with those from the B602L gene analysis, demonstrated that the viruses circulating in Sardinia belong to p72/genotype I, but since 1990 have undergone minor genetic variations in respect to its ancestor, thus making it impossible to trace isolates, enabling a more accurate assessment of the origin of outbreaks, and extending knowledge of virus evolution. To solve this problem, we have sequenced and annotated the complete genome of nine ASF isolates collected in Sardinia between 1978 and 2012. This was achieved using sequence data determined by next-generation sequencing. The results showed a very high identity with range of nucleotide similarity among isolates of 99.5 per cent to 99.9 per cent. The ASF virus (ASFV) genomes were composed of terminal inverted repeats and conserved and non-conserved ORFs. Among the conserved ORFs, B385R, H339R, and O61R-p12 showed 100 per cent amino acid identity. The same was true for the hypervariable ORFs, with regard to X69R, DP96R, DP60R, EP153R, B407L, I10L, and L60L genes. The EP402R and B602L genes showed, as expected, an amino acid identity range of 98.5 per cent to 100 per cent and 91 per cent to 100 per cent, respectively. In addition, all of the isolates displayed variable intergenic sequences. As a whole, the results from our studies confirmed a remarkable genetic stability of the ASFV/p72 genotype I viruses circulating in Sardinia.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 719-725 ◽  
Author(s):  
Xiaoli Liu ◽  
Jun Chen ◽  
Zhifan Yang

Two cDNAs specific for P450 genes, CYP6AE28 and CYP6AE30, have been isolated from the rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Both cDNApredicted proteins have 504 amino acid residues in length, but with molecular masses of 60177 Dalton for CYP6AE28 and 60020 Dalton for CYP6AE30, and theoretical pI values of 8.49 for CYP6AE28 and 8.56 for CYP6AE30, respectively. Both putative proteins contain the conserved structural and functional domains characteristic of all CYP6 members. CYP6AE28 and CYP6AE30 show 52% amino acid identity to each other; both of them have 49 - 56% identities with CYP6AE1, Cyp6ae12, and CYP6AE14. Phylogenetic analysis showed that the two P450s are grouped in the lineage containing some of the CYP6AE members, CYP6B P450s and CYP321A1. The transcripts of CYP6AE28 and CYP6AE30 were found to be induced in response to TKM-6, a rice variety with high resistance to C. medinalis. The results suggest that the two P450s may play important roles in adaptation to the host plant rice. This is the first report of P450 genes cloned in C. medinalis


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Laurent Poirel ◽  
Mattia Palmieri ◽  
Michael Brilhante ◽  
Amandine Masseron ◽  
Vincent Perreten ◽  
...  

ABSTRACT A carbapenem-resistant Pseudomonas synxantha isolate recovered from chicken meat produced the novel carbapenemase PFM-1. That subclass B2 metallo-β-lactamase shared 71% amino acid identity with β-lactamase Sfh-1 from Serratia fonticola. The blaPFM-1 gene was chromosomally located and likely acquired. Variants of PFM-1 sharing 90% to 92% amino acid identity were identified in bacterial species belonging to the Pseudomonas fluorescens complex, including Pseudomonas libanensis (PFM-2) and Pseudomonas fluorescens (PFM-3), highlighting that these species constitute reservoirs of PFM-like encoding genes.


2019 ◽  
Vol 65 (11) ◽  
pp. 783-794
Author(s):  
Ajay Kumar Yadav ◽  
Kaushal Kishor Rajak ◽  
Mukesh Bhatt ◽  
Ashok Kumar ◽  
Soumendu Chakravarti ◽  
...  

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52–136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Sara Kleindienst ◽  
Karuna Chourey ◽  
Gao Chen ◽  
Robert W. Murdoch ◽  
Steven A. Higgins ◽  
...  

ABSTRACTDichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM’s genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase ofDehalococcoides mccartyistrain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase ofDehalobactersp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCENaturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacteriumDehalobacterium formicoaceticumand “CandidatusDichloromethanomonas elyunquensis” strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.


2001 ◽  
Vol 75 (15) ◽  
pp. 7122-7130 ◽  
Author(s):  
E. R. Tulman ◽  
C. L. Afonso ◽  
Z. Lu ◽  
L. Zsak ◽  
G. F. Kutish ◽  
...  

ABSTRACT Lumpy skin disease virus (LSDV), a member of the capripoxvirus genus of the Poxviridae, is the etiologic agent of an important disease of cattle in Africa. Here we report the genomic sequence of LSDV. The 151-kbp LSDV genome consists of a central coding region bounded by identical 2.4 kbp-inverted terminal repeats and contains 156 putative genes. Comparison of LSDV with chordopoxviruses of other genera reveals 146 conserved genes which encode proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication, protein processing, virion structure and assembly, and viral virulence and host range. In the central genomic region, LSDV genes share a high degree of colinearity and amino acid identity (average of 65%) with genes of other known mammalian poxviruses, particularly suipoxvirus, yatapoxvirus, and leporipoxviruses. In the terminal regions, colinearity is disrupted and poxvirus homologues are either absent or share a lower percentage of amino acid identity (average of 43%). Most of these differences involve genes and gene families with likely functions involving viral virulence and host range. Although LSDV resembles leporipoxviruses in gene content and organization, it also contains homologues of interleukin-10 (IL-10), IL-1 binding proteins, G protein-coupled CC chemokine receptor, and epidermal growth factor-like protein which are found in other poxvirus genera. These data show that although LSDV is closely related to other members of the Chordopoxvirinae, it contains a unique complement of genes responsible for viral host range and virulence.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 132-132
Author(s):  
Venkata Bandarupalli ◽  
Benoit St- Pierre

Abstract In cattle fed concentrate diets, rumen amylolytic bacteria digest starch into glucose, which is metabolized for growth. Since metagenomics studies have revealed that uncharacterized ruminal amylolytic bacteria far outnumber known starch utilizers, we have been pursing the identification of novel ruminal amylolytic bacteria. The same Operational Taxonomic Unit (OTU) was enriched independently from the rumen fluid of two beef cows after culturing with starch. Since this identification was performed using the V1–V3 region of the 16S rRNA gene, a metagenomic analysis was conducted to determine whether this OTU represented the same strain or different strains of the same species. A total of 9.25 and 9.16 million sequence reads were respectively generated from a select enriched starch culture from each cow, which had a relative abundance for this OTU of 67.9% and 74.0%, respectively. Contigs were assembled using the publicly available software ABySS, with contigs of at least 2kb in length used for further analysis. Of the enzymes identified by gene annotation of these contigs (using a combination of the online tools RAST and BLASTp), the presence of genes encoding α-amylase and lactate dehydrogenase enzymes further supported this OTU as corresponding to a starch utilizer. The alpha-amylase isoforms from the two rumens differed in amino acid length (538 vs 625) and sequence, with their respective closest affiliation being to an uncultured species of Lachnospiraceae (51% amino acid identity) and to Prevotella albensis (95% amino acid identity), respectively. The lactate dehydrogenase isoforms were also found to be different in length (348 aa vs 335 aa) and sequence (100% amino acid identity to Lactobacillus mucosae and 99% to an uncultured species of the genus Olsonella, respectively). These and other gene comparisons together suggest that two strains of the same starch-utilizing OTU have been identified in the rumen of beef cows.


2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Bas B. Oude Munnink ◽  
My V.T. Phan ◽  
Peter Simmonds ◽  
Marion P.G. Koopmans ◽  
Paul Kellam ◽  
...  

Abstract Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus (fisavirus) as well as members detected in insects (Drosophila subobscura and Anopheles sinensis) and parasites (Ascaris suum). As part of an agnostic deep sequencing survey of animal and human viruses in Vietnam, we detected three husaviruses in human fecal samples, two of which share 97–98% amino acid identity to Dutch husavirus strains and one highly divergent husavirus with only 25% amino acid identity to known husaviruses. In addition, the current study found forty-seven complete posavirus genomes from pigs, ten novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five expected Picornavirales protein domains (helicase, 3C-protease, RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV genomes currently available and greatly extends our sequence knowledge of this group of viruses within the Picornavirales order.


2017 ◽  
Vol 5 (9) ◽  
Author(s):  
Ryan C. Shean ◽  
Negar Makhsous ◽  
Rodney L. Crawford ◽  
Keith R. Jerome ◽  
Alexander L. Greninger

ABSTRACT We report draft genome sequences of six novel Picornavirales members from six different spider species found in Washington state. These six viral sequences distinctly clustered together phylogenetically with less than 35% amino acid identity to the closest reference viral genome.


Sign in / Sign up

Export Citation Format

Share Document