scholarly journals Inhibitors of Signaling Pathways That Block Reversal of HIV-1 Latency

2018 ◽  
Vol 63 (2) ◽  
pp. e01744-18 ◽  
Author(s):  
Benni Vargas ◽  
Nicholas S. Giacobbi ◽  
Anwesha Sanyal ◽  
Narasimhan J. Venkatachari ◽  
Feng Han ◽  
...  

ABSTRACT Signaling pathways play a key role in HIV-1 latency. In this study, we used the 24ST1NLESG cell line of HIV-1 latency to screen a library of structurally diverse, medicinally active, cell permeable kinase inhibitors, which target a wide range of signaling pathways, to identify inhibitors of HIV-1 latency reversal. The screen was carried out in the absence or presence of three mechanistically distinct latency-reversing agents (LRAs), namely, prostratin, panobinostat, and JQ-1. We identified inhibitors that only blocked the activity of a specific LRA, as well as inhibitors that blocked the activity of all LRAs. For example, we identified 12 inhibitors targeted toward protein kinase C or downstream kinases that blocked the activity of prostratin. We also identified 12 kinase inhibitors that blocked the reversal of HIV-1 latency irrespective of the LRA used in the screen. Of these, danusertib, an Aurora kinase inhibitor, and PF-3758309, a PAK4 inhibitor, were the most potent. The 50% inhibitory concentrations in the 24ST1NLESG cells ranged from 40 to 147 nM for danusertib (selectivity indices, >150) and from 0.1 to 1 nM for PF-3758309 (selectivity indices, >3,300). Both danusertib and PF-3758309 inhibited latency reversal in CD4+ T cells isolated from HIV-1-infected donors. Collectively, our study describes a chemical approach that can be applied to elucidate the role of signaling pathways involved in LRA activity or the maintenance of HIV-1 latency and also identifies inhibitors of latent HIV-1 reactivation that could be used with antiretroviral therapy to reduce residual viremia.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2813-2813
Author(s):  
Karoline Gäbler ◽  
Catherine Rolvering ◽  
Valérie Palissot ◽  
Guy J. Berchem ◽  
Iris Behrmann ◽  
...  

Abstract Abstract 2813 Background: A somatic point mutation in the Janus kinase 2 gene (JAK2) leading to the expression of the JAK2 V617F mutant occurs with high frequency in myeloproliferative neoplasm (MPN) patients (>95 % in polycythemia vera (PV), >50 % in essential thrombocythemia (ET) and primary myelofibrosis (PMF)). It confers constitutive activity to the kinase and results in cytokine hypersensitivity and a proliferative advantage of hematopoietic progenitor cells. These findings suggest that inhibiting JAK2 V617F may be therapeutically beneficial. Several JAK2 inhibitors are currently in clinical trials for the treatment of MPN, and first results show clinical improvements for PMF patients. However, since approximately 50 % of ET and PMF patients do not carry an activating mutation in JAK2, we speculate that the inhibition of signaling proteins other than JAK2 or in combination with JAK2 inhibition could be beneficial for these patients. Methods: We characterized compounds from different chemical classes, which previously have been published to be JAK(2) inhibitors. These compounds were compared in several assays using primary CD34+ cells from PV patients positive for the JAK2 V617F mutation and/or the JAK2 V617F-bearing cell line HEL. We used (quantitative) Western blot detections, in vitro kinase assays, proliferation assays, cell size measurements, cell cycle analyses and colony forming cell (CFC) assays to analyze the efficacy of the different inhibitors. Moreover, the IC50 values of the compounds were determined. Results: In total 15 published JAK2 inhibitors have been characterized in detail. As monitored in an in vitro kinase assay and by Western blot detection of phosphorylated signaling proteins, several compounds previously described as JAK(2) inhibitors did not target JAK2 V617F. However, some compounds, which turned out not to inhibit JAKs, showed growth-inhibitory effects on JAK2 V617F-positive cells. Such compounds could be used in combination with a specific JAK inhibitor in order to achieve beneficial effects on suppression of cell proliferation and induction of apoptosis. We could demonstrate that the combined application of a JAK inhibitor together with an Aurora kinase inhibitor was most promising: application of both Janus and Aurora kinase inhibitors in proliferation assays and CFC assays demonstrated a more effective suppression of growth than achieved by respective single treatments. Interestingly, we observed in the CFC assay that a JAK2 inhibitor seems to preferentially suppress the growth of erythroid colonies, while an Aurora kinase inhibitor preferentially blocks myeloid colony growth. Conclusion: Here we present a comparative analysis and a detailed biochemical characterization of numerous compounds from different chemical classes, all supposed to be JAK(2) inhibitors. We confirmed JAK(2) inhibitory activity for several compounds but not for all. In addition, we identified some compounds, which effectively inhibited the proliferation of JAK2 V617F-bearing cells without targeting JAK2. Thus, combined inhibition of JAK2 and other kinases may represent a promising therapeutic strategy. In particular, we suggest that a combination of Janus and Aurora kinase inhibitors might be beneficial for the treatment of MPN patients. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 5 (10) ◽  
pp. 2459-2467 ◽  
Author(s):  
Jennifer A. Seamon ◽  
Catherine A. Rugg ◽  
Stuart Emanuel ◽  
Anna Maria Calcagno ◽  
Suresh V. Ambudkar ◽  
...  

2020 ◽  
Vol 20 (12) ◽  
pp. 1074-1092 ◽  
Author(s):  
Rammohan R.Y. Bheemanaboina

Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive target for the development of novel pharmaceuticals to treat cancer and various other diseases. In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors are currently under active clinical development. So far clinical candidates are non-selective kinase inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective inhibition will ultimately be determined, with the development of drug resistance and the demand for next-generation inhibitors, it will continue to be of great significance to understand the potential mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.


2018 ◽  
Vol 18 (3) ◽  
pp. 199-213
Author(s):  
Guangying Qi ◽  
Jing Liu ◽  
Sisi Mi ◽  
Takaaki Tsunematsu ◽  
Shengjian Jin ◽  
...  

Aurora kinases are a group of serine/threonine kinases responsible for the regulation of mitosis. In recent years, with the increase in Aurora kinase-related research, the important role of Aurora kinases in tumorigenesis has been gradually recognized. Aurora kinases have been regarded as a new target for cancer therapy, resulting in the development of Aurora kinase inhibitors. The study and application of these small-molecule inhibitors, especially in combination with chemotherapy drugs, represent a new direction in cancer treatment. This paper reviews studies on Aurora kinases from recent years, including studies of their biological function, their relationship with tumor progression, and their inhibitors.


2021 ◽  
Vol 22 (11) ◽  
pp. 5722
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Cinzia Marinaro ◽  
Claudio Curci ◽  
Marco Invernizzi ◽  
...  

Osteoarthritis (OA) is a painful and disabling disease that affects millions of patients. Its etiology is largely unknown, but it is most likely multifactorial. OA pathogenesis involves the catabolism of the cartilage extracellular matrix and is supported by inflammatory and oxidative signaling pathways and marked epigenetic changes. To delay OA progression, a wide range of exercise programs and naturally derived compounds have been suggested. This literature review aims to analyze the main signaling pathways and the evidence about the synergistic effects of these two interventions to counter OA. The converging nutrigenomic and physiogenomic intervention could slow down and reduce the complex pathological features of OA. This review provides a comprehensive picture of a possible signaling approach for targeting OA molecular pathways, initiation, and progression.


Sign in / Sign up

Export Citation Format

Share Document