scholarly journals Comparative RNA-seq-Based Transcriptome Analysis of the Virulence Characteristics of Methicillin-Resistant and -Susceptible Staphylococcus pseudintermedius Strains Isolated from Small Animals

2015 ◽  
Vol 60 (2) ◽  
pp. 962-967 ◽  
Author(s):  
Natacha Couto ◽  
Adriana Belas ◽  
Manuela Oliveira ◽  
Paulo Almeida ◽  
Carla Clemente ◽  
...  

ABSTRACTStaphylococcus pseudintermediusis often associated with pyoderma, which can turn into a life-threatening disease. The dissemination of highly resistant isolates has occurred in the last 10 years and has challenged antimicrobial treatment of these infections considerably. We have compared the carriage of virulence genes and biofilm formation between methicillin-resistant and methicillin-susceptibleS. pseudintermedius(MRSP and MSSP, respectively) isolates and theirin vitrogene expression profiles by transcriptome sequencing (RNA-seq). Isolates were relatively unevenly distributed among the fouragrgroups, andagrtype III predominated in MRSP. Five virulence genes were detected in all isolates. Only thespsOgene was significantly associated with MSSP isolates (P= 0.04). All isolates produced biofilm in brain heart infusion broth (BHIB)–4% NaCl. MSSP isolates produced more biofilm on BHIB and BHIB–1% glucose media than MRSP isolates (P= 0.03 andP= 0.02, respectively). Virulence genes encoding surface proteins and toxins (spsA,spsB,spsD,spsK,spsL,spsN,nucC,coa, andluk-I) and also prophage genes (encoding phage capsid protein, phage infection protein, two phage portal proteins, and a phage-like protein) were highly expressed in the MRSP isolate (compared with the MSSP isolate), suggesting they may play a role in the rapid and widespread dissemination of MRSP. This study indicates that MRSP may upregulate surface proteins, which may increase the adherence of MRSP isolates (especially sequence type 71 [ST71]) to corneocytes. MSSP isolates may have an increased ability to form biofilm under acidic circumstances, through upregulation of the entirearcoperon. Complete understanding ofS. pseudintermediuspathogenesis and host-pathogen signal interaction during infections is critical for the treatment and prevention ofS. pseudintermediusinfections.

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Ting Y. Wong ◽  
Jesse M. Hall ◽  
Evan S. Nowak ◽  
Dylan T. Boehm ◽  
Laura A. Gonyar ◽  
...  

ABSTRACTBordetella pertussiscauses the disease whooping cough through coordinated control of virulence factors by theBordetellavirulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describein vitrogene expression profiles ofB. pertussisand other pathogens. In previous studies, we have analyzed thein vitrogene expression profiles ofB. pertussis, and we hypothesize that the infection transcriptome profilein vivois significantly different from that under laboratory growth conditions. To study the infection transcriptome ofB. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing thein vitroandin vivogene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical forB. pertussissurvivalin vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile ofB. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection.IMPORTANCEIn vitrogrowth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” ofB. pertussisin the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.


2012 ◽  
Vol 80 (7) ◽  
pp. 2382-2389 ◽  
Author(s):  
Christopher P. Montgomery ◽  
Susan Boyle-Vavra ◽  
Agnès Roux ◽  
Kazumi Ebine ◽  
Abraham L. Sonenshein ◽  
...  

ABSTRACTTheStaphylococcus aureusglobal regulator CodY responds to nutrient availability by controlling the expression of target genes.In vitro, CodY represses the transcription of virulence genes, but it is not known if CodY also represses virulencein vivo. The dominant community-associated methicillin-resistantS. aureus(CA-MRSA) clone, USA300, is hypervirulent and has increased transcription of global regulators and virulence genes; these features are reminiscent of a strain defective in CodY. Sequence analysis revealed, however, that thecodYgenes of USA300 and other sequencedS. aureusisolates are not significantly different from thecodYgenes in strains known to have active CodY.codYwas expressed in USA300, as well as in other pulsotypes assessed. Deletion ofcodYfrom a USA300 clinical isolate resulted in modestly increased expression of the global regulatorsagrandsaeRS, as well as the gene encoding the toxin alpha-hemolysin (hla). A substantial increase (>30-fold) in expression of thelukF-PVgene, encoding part of the Panton-Valentine leukocidin (PVL), was observed in thecodYmutant. All of these expression differences were reversed by complementation with a functionalcodYgene. Moreover, purified CodY protein bound upstream of thelukSF-PVoperon, indicating that CodY directly represses expression oflukSF-PV. Deletion ofcodYincreased the virulence of USA300 in necrotizing pneumonia and skin infection. Interestingly, deletion oflukSF-PVfrom thecodYmutant did not attenuate virulence, indicating that the hypervirulence of thecodYmutant was not explained by overexpression of PVL. These results demonstrate that CodY is active in USA300 and that CodY-mediated repression restrains the virulence of USA300.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2015 ◽  
Vol 59 (12) ◽  
pp. 7571-7580 ◽  
Author(s):  
Wei-Tao Jia ◽  
Qiang Fu ◽  
Wen-Hai Huang ◽  
Chang-Qing Zhang ◽  
Mohamed N. Rahaman

ABSTRACTThere is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TECin vitroand to cure methicillin-resistantStaphylococcus aureus(MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.


2015 ◽  
Vol 59 (8) ◽  
pp. 4497-4503 ◽  
Author(s):  
Katie E. Barber ◽  
Jordan R. Smith ◽  
Cortney E. Ireland ◽  
Blaise R. Boles ◽  
Warren E. Rose ◽  
...  

ABSTRACTAnnually, medical device infections are associated with >250,000 catheter-associated bloodstream infections (CLABSI), with up to 25% mortality.Staphylococcus aureus, a primary pathogen in these infections, is capable of biofilm production, allowing organism persistence in harsh environments, offering antimicrobial protection. With increases inS. aureusisolates with reduced susceptibility to current agents, ceftaroline (CPT) offers a therapeutic alternative. Therefore, we evaluated whether CPT would have a role against biofilm-producing methicillin-resistantS. aureus(MRSA), including those with decreased susceptibilities to alternative agents. In this study, we investigated CPT activity alone or combined with daptomycin (DAP) or rifampin (RIF) against 3 clinical biofilm-producing MRSA strains in anin vitrobiofilm pharmacokinetic/pharmacodynamic (PK/PD) model. Simulated antimicrobial regimens were as follows: 600 mg of CPT every 8 h (q8h) (free maximum concentration of drug [fCmax], 17.04 mg/liter; elimination half-life [t1/2], 2.66 h), 12 mg/kg of body weight/day of DAP (fCmax, 14.7 mg/liter;t1/2, 8 h), and 450 mg of RIF q12h (fCmax, 3.5 mg/liter;t1/2, 3.4 h), CPT plus DAP, and CPT plus RIF. Samples were obtained and plated to determine colony counts. Differences in log10CFU/cm2were evaluated by analysis of variance with Tukey'spost hoctest. The strains were CPT and vancomycin susceptible and DAP nonsusceptible (DNS). CPT displayed activity throughout the experiment. DAP demonstrated initial activity with regrowth at 24 h in all strains. RIF was comparable to the drug-free control, and little benefit was observed when combined with CPT. CPT plus DAP displayed potent activity, with an average log10CFU/cm2reduction of 3.33 ± 1.01 from baseline. CPT demonstrated activity against biofilm-producing DNS MRSA. CPT plus DAP displayed therapeutic enhancement over monotherapy, providing a potential option for difficult-to-treat medical device infections.


2015 ◽  
Vol 197 (11) ◽  
pp. 1921-1930 ◽  
Author(s):  
Jennifer Tsang ◽  
Timothy R. Hoover

ABSTRACTFlagellar biogenesis inHelicobacter pyloriis regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ80), RpoN (σ54), and FliA (σ28), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaBandflgE) and FliA-dependent (flaA) genes. The MS ring (encoded byfliF) is one of the earliest flagellar structures assembled. Deletion offliFresulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease inflaAtranscript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions offliHand genes encoding C ring components (fliMandfliY) decreased transcript levels offlaBandflgEbut had little or no effect on transcript levels offlaA. Transcript levels offlaBandflgEwere elevated in mutants where genes encoding rod proteins (fliEandflgBC) were deleted, while transcript levels offlaAwas reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure.IMPORTANCEThe mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of theH. pyloriflagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these basal body proteins may interact directly with regulatory proteins that control transcription of theH. pyloriRpoN regulon, a hypothesis that can be tested by examining protein-protein interactionsin vitro.


2013 ◽  
Vol 57 (11) ◽  
pp. 5717-5720 ◽  
Author(s):  
Hung-Jen Tang ◽  
Chi-Chung Chen ◽  
Kuo-Chen Cheng ◽  
Kuan-Ying Wu ◽  
Yi-Chung Lin ◽  
...  

ABSTRACTTo compare thein vitroantibacterial efficacies and resistance profiles of rifampin-based combinations against methicillin-resistantStaphylococcus aureus(MRSA) in a biofilm model, the antibacterial activities of vancomycin, teicoplanin, daptomycin, minocycline, linezolid, fusidic acid, fosfomycin, and tigecycline alone or in combination with rifampin against biofilm-embedded MRSA were measured. The rifampin-resistant mutation frequencies were evaluated. Of the rifampin-based combinations, rifampin enhances the antibacterial activities of and even synergizes with fusidic acid, tigecycline, and, to a lesser extent, linezolid, fosfomycin, and minocycline against biofilm-embedded MRSA. Such combinations with weaker rifampin resistance induction activities may provide a therapeutic advantage in MRSA biofilm-related infections.


2016 ◽  
Vol 36 (12) ◽  
pp. 1178-1180 ◽  
Author(s):  
Larissa S. Botoni ◽  
Carolina B. Scherer ◽  
Rodrigo O. Silva ◽  
Fernanda M. Coura ◽  
Marcos B. Heinemann ◽  
...  

ABSTRACT: In order to assess the prevalence of Methicillin-resistant Staphylococcus pseudintermedius from skin and nostrils of dogs with pyoderma, to determine its in vitro susceptibility, and to correlate these data with the presence of the mecA gene, 43 dogs were selected. Samples were collected from secretion of their skin lesions and right nostril, cultured, and analyzed for phenotypic and genotypic characteristics of the bacteria studied. In 62 samples (91%) the microorganism was classified as S. pseudintermedius. The rate of resistance against antibiotics ranged from 7% (amikacin; 4/62) to 77% (sulfamethoxazole + trimethoprim; 48/62). Resistance against oxacillin was found in 34% of the samples (21/62). Twenty-five samples (37%) were strains that carried the mecA gene. A significant correlation (P<0.01) was found between presence of the mecA gene and oxacillin resistance. Seventeen dogs were mecA gene carriers, and 8 (47%) of them had the gene in the skin lesions and nostril. A significant correlation (P<0.01) was also observed between the presence of mecA gene in the skin lesions and nostrils. Oxacillin resistance in vitro can be safely used to indicate the presence of mecA gene in MRSP samples. The nostrils can be a reservoir of MRSP in dogs.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Shauna D. Drumm ◽  
Rebecca Owens ◽  
Jennifer Mitchell ◽  
Orla M. Keane

In Ireland, Staphylococcus aureus is the most common cause of intramammary infection (IMI) in cattle with the bovine-adapted lineages CC151 and CC97 most commonly found. Surface proteins play a major role in establishing and maintaining the infection. A previous study revealed that a strain from the CC151 lineage showed significant decay in genes encoding predicted surface proteins. Twenty-three S. aureus strains, twelve belonging to CC151 and eleven belonging to CC97, isolated from clinical IMI, were sequenced and genes encoding cell wall anchored (CWA) proteins predicted. Analysis showed that a minority of genes encoding putative CWA proteins were intact in the CC151 strains compared to CC97. Of the 26 known CWA proteins in S. aureus, the CC151 strains only encoded 10 intact genes while CC97 encoded on average 18 genes. Also within the CC97 lineage, the repertoire of genes varied depending on individual strains, with strains encoding between 17-20 intact genes. Although CC151 is reported to internalize within bovine host cells, it does so in a fibronectin-binding protein (FnBPA and FnBPB) independent manner. In-vitro assays were performed and results showed that strains from CC151, and surprisingly also CC97, weakly bound bovine fibronectin and that the FnBPs were poorly expressed in both these lineages. Mass spectrometry analysis of cell wall extracts revealed that SdrE and AdsA were the most highly expressed CWA proteins in both lineages. These results demonstrate significant differences between CC151 and CC97 in their repertoire of genes encoding CWA proteins, which may impact immune recognition of these strains and their interactions with host cells.


Sign in / Sign up

Export Citation Format

Share Document