scholarly journals Macrolides Inhibit Fusobacterium nucleatum-Induced MUC5AC Production in Human Airway Epithelial Cells

2013 ◽  
Vol 57 (4) ◽  
pp. 1844-1849 ◽  
Author(s):  
Kentaro Nagaoka ◽  
Katsunori Yanagihara ◽  
Yosuke Harada ◽  
Koichi Yamada ◽  
Yohei Migiyama ◽  
...  

ABSTRACTFusobacterium nucleatumis one of the most common anaerobic bacteria in periodontitis and is responsible for several extraoral infections, including respiratory tract diseases. In this study, we examined whetherF. nucleatuminduces mucin secretion in airway epithelial cells. We also examined the effects of macrolides onF. nucleatum-induced mucus production compared with the effects of other antibiotics that exert anti-anaerobic activities. The production of MUC5AC, the major core protein of mucin secreted from the airway surface epithelium, in bronchial epithelial cells after stimulation with culture supernatants (Sup) ofF. nucleatumwas analyzed by performing enzyme-linked immunosorbent assay and quantitative RT-PCR. The cell-signaling pathway ofF. nucleatumSup stimulation was also analyzed by Western blotting. For inhibition studies, cells were treated with azithromycin, clarithromycin, clindamycin (CLDM), and metronidazole (MTZ). TheF. nucleatumSup induced NCI-H292 cells to express MUC5AC at both the protein level and the mRNA level in both a time- and dose-dependent manner. Macrolides inhibitedF. nucleatumSup-induced MUC5AC production, while CLDM and MTZ were less effective.F. nucleatumSup induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and this induction was suppressed by macrolides.F. nucleatumSup-induced MUC5AC production was blocked by the ERK pathway inhibitor U0126.F. nucleatumis likely to contribute to excessive mucin production, which suggests that periodontitis may correlate with the pathogenesis of chronic respiratory tract infection. Macrolides seem to reduce this mucin production and might represent an additional means of therapeutic intervention forF. nucleatumrespiratory tract infections other than CLDM and MTZ.

2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Daniel Cozens ◽  
Erin Sutherland ◽  
Miquel Lauder ◽  
Geraldine Taylor ◽  
Catherine C. Berry ◽  
...  

ABSTRACTThe Gram-negative bacteriumMannheimia haemolyticais the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions ofM. haemolyticawith airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains ofM. haemolyticaand the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2,M. haemolyticainvades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1M. haemolyticathat occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick J. Messerschmitt ◽  
Ashley N. Rettew ◽  
Nicholas O. Schroeder ◽  
Robert E. Brookover ◽  
Avanti P. Jakatdar ◽  
...  

β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.


2006 ◽  
Vol 80 (11) ◽  
pp. 5301-5307 ◽  
Author(s):  
Michael A. James ◽  
John H. Lee ◽  
Aloysius J. Klingelhutz

ABSTRACT Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-κB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-κB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-κB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-κB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-κB activation and protection from apoptosis in airway epithelial cells.


2015 ◽  
Vol 34 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Akiko Honda ◽  
Kenshi Tsuji ◽  
Yugo Matsuda ◽  
Tomohiro Hayashi ◽  
Wataru Fukushima ◽  
...  

Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn2+, V4+, V5+, Cr3+, Cr6+, Zn2+, Ni2+, and Pb2+ at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V5+ tended to have a greater effect than V4+. The Cr decreased the cell viability, and (Cr+6) at concentrations of 50 and 500 μmol/L was more toxic than (Cr+3). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V+4, V+5), (Cr+3, Cr+6), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhu ◽  
Aaron Chidekel ◽  
Thomas H. Shaffer

This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ya-Ni Wang ◽  
Ling-Ling Zhang ◽  
Xiao-Yun Fan ◽  
Sha-Sha Wu ◽  
Sheng-Quan Zhang

Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.


2009 ◽  
Vol 53 (8) ◽  
pp. 3285-3293 ◽  
Author(s):  
Carolyn L. Cannon ◽  
Lisa A. Hogue ◽  
Ravy K. Vajravelu ◽  
George H. Capps ◽  
Aida Ibricevic ◽  
...  

ABSTRACT The expanding clinical challenge of respiratory tract infections due to resistant bacteria necessitates the development of new forms of therapy. The development of a compound composed of silver coupled to a methylated caffeine carrier (silver carbene complex 1 [SCC1]) that demonstrated in vitro efficacy against bacteria, including drug-resistant organisms, isolated from patients with respiratory tract infections was described previously. The findings of current in vitro studies now suggest that bactericidal concentrations of SCC1 are not toxic to airway epithelial cells in primary culture. Thus, it was hypothesized that SCC1 could be administered by the aerosolized route to concentrate delivery to the lung while minimizing systemic toxicity. In vivo, aerosolized SCC1 delivered to mice resulted in mild aversion behavior, but it was otherwise well tolerated and did not cause lung inflammation following administration over a 5-day period. The therapeutic efficacy of SCC1 compared to that of water was shown in a 3-day prophylaxis protocol, in which mice infected with a clinical strain of Pseudomonas aeruginosa had increased survival, decreased amounts of bacteria in the lung, and a lower prevalence of bacteremia. Similarly, by using an airway infection model in which bacteria were impacted in the airways by agarose beads, the administration of SCC1 was significantly superior to water in decreasing the lung bacterial burden and the levels of bacteremia and markers of airway inflammation. These observations indicate that aerosolized SCC1, a novel antimicrobial agent, warrants further study as a potential therapy for bacterial respiratory tract infections.


2005 ◽  
Vol 289 (1) ◽  
pp. L14-L23 ◽  
Author(s):  
Funmei Yang ◽  
David J. Haile ◽  
Xinchao Wang ◽  
Lisa A. Dailey ◽  
Jacqueline G. Stonehuerner ◽  
...  

Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluorescence labeling and confocal microscopic imaging techniques, we demonstrate that in human and rodent lungs, FPN1 localizes subcellularly to the apical but not basolateral membrane of the airway epithelial cells. The role of airway epithelial cells in iron mobilization in the lung was studied in an in vitro model of the polarized airway epithelium. Normal human bronchial epithelial cells, grown on membrane supports until differentiated, were exposed to iron, and the efficiency and direction of iron transportation were studied. We found that these cells can efficiently take up iron across the apical but not basolateral surface in a concentration-dependent manner. Most of the iron taken up by the cells is then released into the medium within 8 h in the form of less reactive protein-bound complexes including ferritin and transferrin. Interestingly, iron release also occurred across the apical but not basolateral membrane. Our findings indicate that FPN1, depending on its subcellular location, could have distinct functions in iron homeostasis in different cells and tissues. Although it is responsible for exporting nutrient iron from enterocytes to the circulation in the intestine, it could play a role in iron detoxification in airway epithelial cells in the lung.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Anna C. Zemke ◽  
Emily J. D’Amico ◽  
Emily C. Snell ◽  
Angela M. Torres ◽  
Naomi Kasturiarachi ◽  
...  

ABSTRACT Pseudomonas aeruginosa grows in highly antibiotic-tolerant biofilms during chronic airway infections. Dispersal of bacteria from biofilms may restore antibiotic susceptibility or improve host clearance. We describe models to study biofilm dispersal in the nutritionally complex environment of the human airway. P. aeruginosa was cocultured in the apical surface of airway epithelial cells (AECs) in a perfusion chamber. Dispersal, triggered by sodium nitrite, a nitric oxide (NO) donor, was tracked by live cell microscopy. Next, a static model was developed in which biofilms were grown on polarized AECs without flow. We observed that NO-triggered biofilm dispersal was an energy-dependent process. From the existing literature, NO-mediated biofilm dispersal is regulated by DipA, NbdA, RbdA, and MucR. Interestingly, altered signaling pathways appear to be used in this model, as deletion of these genes failed to block NO-induced biofilm dispersal. Similar results were observed using biofilms grown in an abiotic model on glass with iron-supplemented cell culture medium. In cystic fibrosis, airway mucus contributes to the growth environment, and a wide range of bacterial phenotypes are observed; therefore, we tested biofilm dispersal in a panel of late cystic fibrosis clinical isolates cocultured in the mucus overlying primary human AECs. Finally, we examined dispersal in combination with the clinically used antibiotics ciprofloxacin, aztreonam and tobramycin. In summary, we have validated models to study biofilm dispersal in environments that recapitulate key features of the airway and identified combinations of currently used antibiotics that may enhance the therapeutic effect of biofilm dispersal. IMPORTANCE During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam.


Sign in / Sign up

Export Citation Format

Share Document