scholarly journals Protective Effect of a Synbiotic against Multidrug-Resistant Acinetobacter baumannii in a Murine Infection Model

2016 ◽  
Vol 60 (5) ◽  
pp. 3041-3050 ◽  
Author(s):  
Takashi Asahara ◽  
Akira Takahashi ◽  
Norikatsu Yuki ◽  
Rumi Kaji ◽  
Takuya Takahashi ◽  
...  

ABSTRACTThis study investigated the ability of the probioticBifidobacterium brevestrain Yakult (BbY) to protect against infection, as well as the potentiation of BbY activity by the synbiotic combination of BbY and prebiotic galactooligosaccharides (GOS). The study employed a mouse model of lethal intestinal multidrug-resistantAcinetobacter baumannii(MDRAb) infection. The endogenous intestinal microbiota was disrupted by the administration of multiple antibiotics, causing the loss of endogenousBifidobacterium. Oral infection of these mice with MDRAb resulted in marked growth of this organism. Additional treatment of the infected mice with a sublethal dose of 5-fluorouracil (5-FU) induced systemic invasion by MDRAb and subsequent animal death. The continuous oral administration of BbY increased the survival rate and inhibited the intestinal growth and invasion by MDRAb in the infection model. Disruptions of the intestinal environment and barrier function in the infected mice were attenuated by BbY. Protection against the MDRAb infection was markedly potentiated by a synbiotic combination of BbY and GOS, although GOS by itself did not provide protection. Negative correlations were observed between intestinal MDRAb and BbY counts or acetic acid levels; positive correlations were observed between acetic acid levels and intestinal epithelium expression of tight-junction-related genes. These results demonstrated that the probiotic and synbiotic markedly potentiated protection against fatal intestinal infection caused by a multidrug-resistant bacterium. Probiotics and synbiotics are presumed to provide protection by compensation for the disrupted indigenous populations, thereby maintaining the intestinal environments and barrier functions otherwise targeted during opportunistic infection by MDRAb.

2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Anthony D. Kang ◽  
Kenneth P. Smith ◽  
Anders H. Berg ◽  
Katherine A. Truelson ◽  
George M. Eliopoulos ◽  
...  

ABSTRACT Apramycin, an aminocyclitol aminoglycoside, was rapidly bactericidal against Acinetobacter baumannii . In a neutropenic murine thigh infection model, treatment-associated A. baumannii CFU reductions of >4 log 10 per thigh were observed for all exposures for which area under the curve (AUC)/MIC ratio was >50 and maximum concentration of drug in serum ( C max )/MIC was ≈10 or higher. Based on these findings, we suggest that apramycin deserves further preclinical exploration as a repurposed therapeutic for multidrug-resistant Gram-negative pathogens, including A. baumannii .


2020 ◽  
Vol 89 (1) ◽  
pp. e00180-20
Author(s):  
Michael J. Gebhardt ◽  
Daniel M. Czyz ◽  
Shweta Singh ◽  
Daniel V. Zurawski ◽  
Lev Becker ◽  
...  

ABSTRACTA critical facet of mammalian innate immunity involves the hosts’ attempts to sequester and/or limit the availability of key metabolic products from pathogens. For example, nutritional immunity encompasses host approaches to limit the availability of key heavy metal ions such as zinc and iron. Previously, we identified several hundred genes in a multidrug-resistant isolate of Acinetobacter baumannii that are required for growth and/or survival in the Galleria mellonella infection model. In the present study, we further characterize one of these genes, a LysR family transcription regulator that we previously named GigC. We show that mutant strains lacking gigC have impaired growth in the absence of the amino acid cysteine and that gigC regulates the expression of several genes involved in the sulfur assimilation and cysteine biosynthetic pathways. We further show that cells harboring a deletion of the gigC gene are attenuated in two murine infection models, suggesting that the GigC protein, likely through its regulation of the cysteine biosynthetic pathway, plays a key role in the virulence of A. baumannii.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Yu-Wei Lin ◽  
Qi Tony Zhou ◽  
Mei-Ling Han ◽  
Ke Chen ◽  
Nikolas J. Onufrak ◽  
...  

ABSTRACT The pharmacokinetics/pharmacodynamics (PK/PD) of aerosolized colistin was investigated against Acinetobacter baumannii and Klebsiella pneumoniae over 24 h in a neutropenic mouse lung infection model. Dose fractionation studies were performed over 2.64 to 23.8 mg/kg/day, and the data were fitted to a sigmoid inhibitory model. The area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC) in the epithelial lining fluid was the most predictive PK/PD index for aerosolized colistin against both pathogens. Our study provides important pharmacological information for optimizing aerosolized colistin.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
David C. Griffith

ABSTRACTWe have evaluated the activity of meropenem-vaborbactam against clinical isolates ofPseudomonas aeruginosaandAcinetobacter baumanniiin a neutropenic mouse thigh infection model. Data show that meropenem-vaborbactam regimens equivalent to 3-h infusions every 8 h with 2 g meropenem and 2 g vaborbactam produced bacterial killing against strains with MICs of 2 to 16 mg/liter and suggests that this combination may have utility in the treatment of infections caused byP. aeruginosaandA. baumannii.


2018 ◽  
Vol 63 (2) ◽  
pp. e01040-18 ◽  
Author(s):  
Sean M. Stainton ◽  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
...  

ABSTRACT Herein, we evaluated sustainability of humanized exposures of cefiderocol in vivo over 72 h against pathogens with cefiderocol MICs of 0.5 to 16 μg/ml in the neutropenic murine thigh model. In Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae displaying MICs of 0.5 to 8 μg/ml (n = 11), sustained kill was observed at 72 h among 9 isolates. Postexposure MICs revealed a single 2-dilution increase in one animal compared with controls (1/54 samples, 1.8%) at 72 h. Adaptive resistance during therapy was not observed.


2012 ◽  
Vol 56 (11) ◽  
pp. 5961-5970 ◽  
Author(s):  
Luísa C. S. Antunes ◽  
Francesco Imperi ◽  
Fabrizia Minandri ◽  
Paolo Visca

ABSTRACTMultidrug-resistantAcinetobacter baumanniiposes a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumanniichemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58A. baumanniistrains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3delayed the entry ofA. baumanniiinto the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3also protectedGalleria mellonellalarvae from lethalA. baumanniiinfection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3inhibited the growth in human serum of 76% of the multidrug-resistantA. baumanniiisolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment ofA. baumanniibloodstream infections. Ga(NO3)3also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistantA. baumannii.


2019 ◽  
Vol 8 (39) ◽  
Author(s):  
Nicholas Martinez ◽  
Eric Williams ◽  
Heather Newkirk ◽  
Mei Liu ◽  
Jason J. Gill ◽  
...  

Klebsiella pneumoniae is a multidrug-resistant bacterium causing many severe hospital-acquired infections. Here, we describe siphophage Sweeny that infects K. pneumoniae. Of its 78 predicted protein-encoding genes, a functional assignment was given to 36 of them. Sweeny is most closely related to T1-like phages at the protein level.


2016 ◽  
Vol 198 (23) ◽  
pp. 3209-3219 ◽  
Author(s):  
Brian A. Renda ◽  
Cindy Chan ◽  
Kristin N. Parent ◽  
Jeffrey E. Barrick

ABSTRACTBacterial genomes commonly contain prophage sequences as a result of past infections with lysogenic phages. Many of these integrated viral sequences are believed to be cryptic, but prophage genes are sometimes coopted by the host, and some prophages may be reactivated to form infectious particles when cells are stressed or mutate. We found that a previously uncharacterized filamentous phage emerged from the genome ofAcinetobacter baylyiADP1 during a laboratory evolution experiment. This phage has a genetic organization similar to that of theVibrio choleraeCTXϕ phage. The emergence of the ADP1 phage was associated with the evolution of reduced transformability in our experimental populations, so we named it thecompetence-reducingacinetobacter phage (CRAϕ). Knocking out ADP1 genes required for competence leads to resistance to CRAϕ infection. Although filamentous bacteriophages are known to target type IV pili, this is the first report of a phage that apparently uses a competence pilus as a receptor.A. baylyimay be especially susceptible to this route of infection because every cell is competent during normal growth, whereas competence is induced only under certain environmental conditions or in a subpopulation of cells in other bacterial species. It is possible that CRAϕ-like phages restrict horizontal gene transfer in nature by inhibiting the growth of naturally transformable strains. We also found that prophages with homology to CRAϕ exist in several strains ofAcinetobacter baumannii. These CRAϕ-likeA. baumanniiprophages encode toxins similar to CTXϕ that might contribute to the virulence of this opportunistic multidrug-resistant pathogen.IMPORTANCEWe observed the emergence of a novel filamentous phage (CRAϕ) from the genome ofAcinetobacter baylyiADP1 during a long-term laboratory evolution experiment. CRAϕ is the first bacteriophage reported to require the molecular machinery involved in the uptake of environmental DNA for infection. Reactivation and evolution of CRAϕ reduced the potential for horizontal transfer of genes via natural transformation in our experiment. Risk of infection by similar phages may limit the expression and maintenance of bacterial competence in nature. The closest studied relative of CRAϕ is theVibrio choleraeCTXϕ phage. Variants of CRAϕ are found in the genomes ofAcinetobacter baumanniistrains, and it is possible that phage-encoded toxins contribute to the virulence of this opportunistic multidrug-resistant pathogen.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Cornelia B. Landersdorfer ◽  
Rajbharan Yadav ◽  
Kate E. Rogers ◽  
Tae Hwan Kim ◽  
Beom Soo Shin ◽  
...  

ABSTRACTWe aimed to prospectively validate an optimized combination dosage regimen against a clinical carbapenem-resistantAcinetobacter baumannii(CRAB) isolate (imipenem MIC, 32 mg/liter; tobramycin MIC, 2 mg/liter). Imipenem at constant concentrations (7.6, 13.4, and 23.3 mg/liter, reflecting a range of clearances) was simulated in a 7-day hollow-fiber infection model (inoculum, ∼107.2CFU/ml) with and without tobramycin (7 mg/kg q24h, 0.5-h infusions). While monotherapies achieved no killing or failed by 24 h, this rationally optimized combination achieved >5 log10bacterial killing and suppressed resistance.


Sign in / Sign up

Export Citation Format

Share Document