scholarly journals Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response.

1990 ◽  
Vol 34 (10) ◽  
pp. 1865-1868 ◽  
Author(s):  
P Gilbert ◽  
P J Collier ◽  
M R Brown
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 661
Author(s):  
Hanna Isaksson ◽  
Peter L. Conlin ◽  
Ben Kerr ◽  
William C. Ratcliff ◽  
Eric Libby

Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.


2005 ◽  
Vol 25 (23) ◽  
pp. 10315-10328 ◽  
Author(s):  
Yukinori Minoshima ◽  
Tetsuya Hori ◽  
Masahiro Okada ◽  
Hiroshi Kimura ◽  
Tokuko Haraguchi ◽  
...  

ABSTRACT We identified CENP-50 as a novel kinetochore component. We found that CENP-50 is a constitutive component of the centromere that colocalizes with CENP-A and CENP-H throughout the cell cycle in vertebrate cells. To determine the precise role of CENP-50, we examined its role in centromere function by generating a loss-of-function mutant in the chicken DT40 cell line. The CENP-50 knockout was not lethal; however, the growth rate of cells with this mutation was slower than that of wild-type cells. We observed that the time for CENP-50-deficient cells to complete mitosis was longer than that for wild-type cells. Centromeric localization of CENP-50 was abolished in both CENP-H- and CENP-I-deficient cells. Coimmunoprecipitation experiments revealed that CENP-50 interacted with the CENP-H/CENP-I complex in chicken DT40 cells. We also observed severe mitotic defects in CENP-50-deficient cells with apparent premature sister chromatid separation when the mitotic checkpoint was activated, indicating that CENP-50 is required for recovery from spindle damage.


Author(s):  
M. Luisa Navarro-Pérez ◽  
M. Coronada Fernández-Calderón ◽  
Virginia Vadillo-Rodríguez

In this paper, a simple numerical procedure is presented to monitor the growth of Streptococcus sanguinis over time in the absence and presence of propolis, a natural antimicrobial. In particular, it is shown that the real-time decomposition of growth curves obtained through optical density measurements into growth rate and acceleration can be a powerful tool to precisely assess a large range of key parameters [ i.e. lag time ( t 0 ), starting growth rate ( γ 0 ), initial acceleration of the growth ( a 0 ), maximum growth rate ( γ max ), maximum acceleration ( a max ) and deceleration ( a min ) of the growth and the total number of cells at the beginning of the saturation phase ( N s )] that can be readily used to fully describe growth over time. Consequently, the procedure presented provides precise data of the time course of the different growth phases and features, which is expected to be relevant, for instance, to thoroughly evaluate the effect of new antimicrobial agents. It further provides insight into predictive microbiology, likely having important implications to assumptions adopted in mathematical models to predict the progress of bacterial growth. Importance: The new and simple numerical procedure presented in this paper to analyze bacterial growth will possibly allow identifying true differences in efficacy among antimicrobial drugs for their applications in human health, food security, and environment, among others. It further provides insight into predictive microbiology, likely helping in the development of proper mathematical models to predict the course of bacterial growth under diverse circumstances.


Author(s):  
Julia Carroll ◽  
Nicolas Van Oostende ◽  
Bess B. Ward

Standard methods for calculating microbial growth rates (μ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus . We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating growth of light synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. Importance Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are essential because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically-available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages means that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean.


2021 ◽  
Vol 2 ◽  
Author(s):  
Josiana Steiger ◽  
Olivier Braissant ◽  
Tuomas Waltimo ◽  
Monika Astasov-Frauenhoffer

This study assessed the efficacy of tin and Polyethylenglycol (PEG-3) tallow aminopropylamine in different concentrations on Streptococcus mutans (S. mutans) biofilms to establish a new screening process for different antimicrobial agents and to gain more information on the antibacterial effects of these agents on cariogenic biofilms. Isothermal microcalorimetry (IMC) was used to determine differences in two growth parameters: lag time and growth rate; additionally, reduction in active biofilms was calculated. Experimental mouth rinses with 400 and 800 ppm tin derived from stannous fluoride (SnF2) revealed results (43.4 and 49.9% active biofilm reduction, respectively) similar to meridol mouth rinse (400 ppm tin combined with 1,567 ppm PEG-3 tallow aminopropylamine; 55.3% active biofilm reduction) (p > 0.05), while no growth of S. mutans biofilms was detected during 72 h for samples treated with an experimental rinse containing 1,600 ppm tin (100% active biofilm reduction). Only the highest concentration (12,536 ppm) of rinses containing PEG-3 tallow aminopropylamine derived from amine fluoride (AmF) revealed comparable results to meridol (57.5% reduction in active biofilm). Lower concentrations of PEG-3 tallow aminopropylamine showed reductions of 16.9% for 3,134 ppm and 33.5% for 6,268 ppm. Maximum growth rate was significantly lower for all the samples containing SnF2 than for the samples containing control biofilms (p < 0.05); no differences were found between the control and all the PEG-3 tallow aminopropylamine (p > 0.05). The growth parameters showed high reproducibility rates within the treated groups of biofilms and for the controls; thus, the screening method provided reliable results.


1999 ◽  
Vol 112 (6) ◽  
pp. 939-946 ◽  
Author(s):  
C.R. Carlson ◽  
B. Grallert ◽  
T. Stokke ◽  
E. Boye

Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.


2020 ◽  
Vol 117 (44) ◽  
pp. 27388-27399
Author(s):  
Xili Liu ◽  
Seungeun Oh ◽  
Leonid Peshkin ◽  
Marc W. Kirschner

The fine balance of growth and division is a fundamental property of the physiology of cells, and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single cell over time. We address these limitations by demonstrating a computationally enhanced methodology for quantitative phase microscopy for adherent cells, using improved image processing algorithms and automated cell-tracking software. Accuracy has been improved more than twofold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth, previously unmeasurable. With these methodological and analytical improvements, in several cell lines we document a remarkable oscillation in growth rate, occurring throughout the cell cycle, coupled to cell division or birth yet independent of cell cycle progression. We expect that further exploration with this advanced tool will provide a better understanding of growth rate regulation in mammalian cells.


PLoS Genetics ◽  
2008 ◽  
Vol 4 (12) ◽  
pp. e1000300 ◽  
Author(s):  
Daniel J. Ferullo ◽  
Susan T. Lovett

Sign in / Sign up

Export Citation Format

Share Document