scholarly journals Correlation between in vitro and in vivo activity of antimicrobial agents against gram-negative bacilli in a murine infection model.

1991 ◽  
Vol 35 (7) ◽  
pp. 1413-1422 ◽  
Author(s):  
B Fantin ◽  
J Leggett ◽  
S Ebert ◽  
W A Craig
2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Feng Wang ◽  
Xinyu Ji ◽  
Qiupeng Li ◽  
Guanling Zhang ◽  
Jiani Peng ◽  
...  

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 μg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


2003 ◽  
Vol 47 (12) ◽  
pp. 3743-3749 ◽  
Author(s):  
Mirjana Macvanin ◽  
Johanna Björkman ◽  
Sofia Eriksson ◽  
Mikael Rhen ◽  
Dan I. Andersson ◽  
...  

ABSTRACT Mutants of Salmonella enterica serovar Typhimurium resistant to fusidic acid (Fusr) have mutations in fusA, the gene encoding translation elongation factor G (EF-G). Most Fusr mutants have reduced fitness in vitro and in vivo, in part explained by mutant EF-G slowing the rate of protein synthesis and growth. However, some Fusr mutants with normal rates of protein synthesis still suffer from reduced fitness in vivo. As shown here, Fusr mutants could be similarly ranked in their relative fitness in mouse infection models, in a macrophage infection model, in their relative hypersensitivity to hydrogen peroxide in vivo and in vitro, and in the amount of RpoS production induced upon entry into the stationary phase. We identify a reduced ability to induce production of RpoS (σs) as a defect associated with Fusr strains. Because RpoS is a regulator of the general stress response, and an important virulence factor in Salmonella, an inability to produce RpoS in appropriate amounts can explain the low fitness of Fusr strains in vivo. The unfit Fusr mutants also produce reduced levels of the regulatory molecule ppGpp in response to starvation. Because ppGpp is a positive regulator of RpoS production, we suggest that a possible cause of the reduced levels of RpoS is the reduction in ppGpp production associated with mutant EF-G. The low fitness of Fusr mutants in vivo suggests that drugs that can alter the levels of global regulators of gene expression deserve attention as potential antimicrobial agents.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ying Sun ◽  
Xueyuan Liao ◽  
Zhigang Huang ◽  
Yaliu Xie ◽  
Yanbin Liu ◽  
...  

ABSTRACT This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo. In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo. The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.


1997 ◽  
Vol 41 (10) ◽  
pp. 2209-2213 ◽  
Author(s):  
J H Kim ◽  
J A Kang ◽  
Y G Kim ◽  
J W Kim ◽  
J H Lee ◽  
...  

CFC-222 is a novel fluoroquinolone containing a C-7 bicyclic amine moiety with potent antibacterial activities against gram-positive, gram-negative, and anaerobic organisms. We compared the in vitro and in vivo activities of CFC-222 with those of ciprofloxacin, ofloxacin, and lomefloxacin. CFC-222 was more active than the other fluoroquinolones tested against gram-positive bacteria. CFC-222 was particularly active against Streptococcus pneumoniae (MIC at which 90% of isolates are inhibited [MIC90], 0.2 microg/ml), Staphylococcus aureus (MIC90, 0.2 microg/ml for ciprofloxacin-susceptible strains), and Enterococcus faecalis (MIC90, 0.39 microg/ml). Against Escherichia coli and other members of the family Enterobacteriaceae, CFC-222 was slightly less active than ciprofloxacin (MIC90s for E. coli, 0.1 and 0.025 microg/ml, respectively). The in vitro activity of CFC-222 was not influenced by inoculum size, medium composition, or the presence of horse serum. However, its activity was decreased significantly by a change in the pH of the medium from 7.0 to 6.0, as was the case for the other quinolones tested. The in vivo protective efficacy of CFC-222 by oral administration was greater than those of the other quinolones tested in a mouse model of intraperitoneally inoculated systemic infection caused by S. aureus. CFC-222 exhibited efficacy comparable to that of ciprofloxacin in the same model of infection caused by gram-negative organisms, such as E. coli and Klebsiella pneumoniae. In this infection model, CFC-222 was slightly less active than ciprofloxacin against Pseudomonas aeruginosa. These results suggest that CFC-222 may be a promising therapeutic agent in various bacterial infections.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
David P. Nicolau

ABSTRACT Cefiderocol (S-649266) is a novel siderophore cephalosporin with potent in vitro activity against clinically encountered multidrug-resistant (MDR) Gram-negative isolates; however, its spectrum of antibacterial activity against these difficult-to-treat isolates remains to be fully explored in vivo. Here, we evaluated the efficacy of cefiderocol humanized exposures in a neutropenic murine thigh model to support a suitable MIC breakpoint. Furthermore, we compared cefiderocol's efficacy with humanized exposures of meropenem and cefepime against a subset of these phenotypically diverse isolates. Ninety-five Gram-negative isolates were studied. Efficacy was determined as the change in log10 CFU at 24 h compared with 0-h controls. Bacterial stasis or ≥1 log reduction in 67 isolates with MICs of ≤4 μg/ml was noted in 77, 88, and 85% of Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, respectively. For isolates with MICs of ≥8 μg/ml, bacterial stasis or ≥1 log10 reduction was observed in only 2 of 28 (8 Enterobacteriaceae, 19 A. baumannii, and 1 P. aeruginosa) strains. Against highly resistant meropenem and cefepime organisms, cefiderocol maintained its in vivo efficacy. Overall, humanized exposures of cefiderocol produced similar reductions in bacterial density for organisms with MICs of ≤4 μg/ml, whereas isolates with MICs of ≥8 μg/ml generally displayed bacterial growth in the presence of the compound. Data derived in the current study will assist with the delineation of MIC susceptibility breakpoints for cefiderocol against these important nosocomial Gram-negative pathogens; however, additional clinical data are required to substantiate these observations.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3699-3709 ◽  
Author(s):  
Lisa K. Nelson ◽  
M. Mark Stanton ◽  
Robyn E. A. Elphinstone ◽  
Janessa Helwerda ◽  
Raymond J. Turner ◽  
...  

Pseudomonas aeruginosa has long been known to produce phenotypic variants during chronic mucosal surface infections. These variants are thought to be generated to ensure bacterial survival against the diverse challenges in the mucosal environment. Studies have begun to elucidate the mechanisms by which these variants emerge in vitro; however, too little information exists on phenotypic variation in vivo to draw any links between variants generated in vitro and in vivo. Consequently, in this study, the P. aeruginosa gacS gene, which has previously been linked to the generation of small colony variants (SCVs) in vitro, was studied in an in vivo mucosal surface infection model. More specifically, the rat prostate served as a model mucosal surface to test for the appearance of SCVs in vivo following infections with P. aeruginosa gacS− strains. As in in vitro studies, deletion of the gacS gene led to SCV production in vivo. The appearance of these in vivo SCVs was important for the sustainability of a chronic infection. In the subset of rats in which P. aeruginosa gacS− did not convert to SCVs, clearance of the bacteria took place and healing of the tissue ensued. When comparing the SCVs that arose at the mucosal surface (MS-SCVs) with in vitro SCVs (IV-SCVs) from the same gacS− parent, some differences between the phenotypic variants were observed. Whereas both MS-SCVs and IV-SCVs formed dense biofilms, MS-SCVs exhibited a less diverse resistance profile to antimicrobial agents than IV-SCVs. Additionally, MS-SCVs were better suited to initiate an infection in the rat model than IV-SCVs. Together, these observations suggest that phenotypic variation in vivo can be important for maintenance of infection, and that in vivo variants may differ from in vitro variants generated from the same genetic parent.


2016 ◽  
Vol 60 (8) ◽  
pp. 5001-5005 ◽  
Author(s):  
Marguerite L. Monogue ◽  
Abrar K. Thabit ◽  
Yukihiro Hamada ◽  
David P. Nicolau

ABSTRACTMembers of the tetracycline class are frequently classified as bacteriostatic. However, recent findings have demonstrated an improved antibacterial killing profile, often achieving ≥3 log10bacterial count reduction, when such antibiotics have been given for periods longer than 24 h. We aimed to study this effect with eravacycline, a novel fluorocycline, given in an immunocompetent murine thigh infection model over 72 h against two methicillin-resistantStaphylococcus aureus(MRSA) isolates (eravacycline MICs = 0.03 and 0.25 μg/ml) and threeEnterobacteriaceaeisolates (eravacycline MICs = 0.125 to 0.25 μg/ml). A humanized eravacycline regimen, 2.5 mg/kg of body weight given intravenously (i.v.) every 12 h (q12h), demonstrated progressively enhanced activity over the 72-h study period. A cumulative dose response in which bacterial density was reduced by more than 3 log10CFU at 72 h was noted over the study period in the two Gram-positive isolates, and eravacycline performed similarly to comparator antibiotics (tigecycline, linezolid, and vancomycin). A cumulative dose response with eravacycline and comparators (tigecycline and meropenem) over the study period was also observed in the Gram-negative isolates, although more variability in bacterial killing was observed for all antibacterial agents. Overall, a bacterial count reduction of ≥3 log was achieved in one of the three isolates with both eravacycline and tigecycline, while meropenem achieved a similar endpoint against two of the three isolates. Bactericidal activity is typically definedin vitroover 24 h; however, extended regimen studiesin vivomay demonstrate an improved correlation with clinical outcomes by better identification of antimicrobial effects.


2018 ◽  
Author(s):  
MG Lloyd ◽  
JL Vossler ◽  
CT Nomura ◽  
JF Moffat

AbstractMultidrug-resistant organisms (MDROs) are increasing in the health care setting, and there are few antimicrobial agents available to treat infections caused by these bacteria.Pseudomonas aeruginosais an opportunistic pathogen in burn patients and individuals with cystic fibrosis (CF), and a leading cause of nosocomial infections.P. aeruginosais inherently resistant to many antibiotics and can develop or acquire resistance to others, limiting options for treatment.P. aeruginosahas virulence factors that are regulated by sigma factors in response to the tissue microenvironment. The alternative sigma factor, RpoN (σ54), regulates many virulence genes and is linked to antibiotic resistance. Recently, we described a cis-acting peptide, RpoN*, which acts as a “molecular roadblock”, binding RpoN consensus promoters at the −24 site and blocking transcription. RpoN* reduces virulence ofP. aeruginosalaboratory strains bothin vitroandin vivo,but its effects in clinical isolates was not known. We investigated the effects of RpoN* on phenotypically variedP. aeruginosastrains isolated from cystic fibrosis patients. RpoN* expression reduced motility, biofilm formation, and pathogenesis in aP. aeruginosa – C. elegansinfection model. RpoN* expression increased susceptibility to several beta-lactam based antibiotics in the lab strainP. aeruginosaPA19660Xen5. Here, we show that using a cis-acting peptide to block RpoN consensus promoters has potential clinical implications in reducing virulence and enhancing the activity of antibiotics.


2019 ◽  
Vol 221 (4) ◽  
pp. 618-626 ◽  
Author(s):  
Leon G Leanse ◽  
Pu-Ting Dong ◽  
Xueping S Goh ◽  
Min Lu ◽  
Ji-Xin Cheng ◽  
...  

Abstract Background Antimicrobial resistance is a significant concern to public health, and there is a pressing need to develop novel antimicrobial therapeutic modalities. Methods In this study, we investigated the capacity for quinine hydrochloride (Q-HCL) to enhance the antimicrobial effects of antimicrobial blue light ([aBL] 405 nm wavelength) against multidrug-resistant (MDR) Gram-negative bacteria in vitro and in vivo. Results Our findings demonstrated the significant improvement in the inactivation of MDR Pseudomonas aeruginosa and Acinetobacter baumannii (planktonic cells and biofilms) when aBL was illuminated during Q-HCL exposure. Furthermore, the addition of Q-HCL significantly potentiated the antimicrobial effects of aBL in a mouse skin abrasion infection model. In addition, combined exposure of aBL and Q-HCL did not result in any significant apoptosis when exposed to uninfected mouse skin. Conclusions In conclusion, aBL in combination with Q-HCL may offer a novel approach for the treatment of infections caused by MDR bacteria.


Sign in / Sign up

Export Citation Format

Share Document