scholarly journals Use of a Recombinant Strain of Mycobacterium avium Expressing β-Galactosidase To Evaluate the Activities of Antimycobacterial Agents inside Macrophages

2001 ◽  
Vol 45 (1) ◽  
pp. 356-358 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Manuela Pardini ◽  
Antonella Boschi ◽  
Daria Bottai ◽  
...  

ABSTRACT A reliable and low-cost method that enables rapid screening of the activity exerted by new antimicrobial agents on intracellularly growingMycobacterium avium has been developed. To this aim, a recombinant (lacZ) strain of M. aviumexpressing the Escherichia coli β-galactosidase gene was used to evaluate, in murine macrophages, the susceptibility of M. avium to common antimycobacterial agents. β-Galactosidase levels, measured in the presence of each of the antibiotics tested, were closely correlated with the number of CFU recovered from theM. avium lacZ strain-infected macrophages.

2015 ◽  
Vol 6 (6) ◽  
pp. 941-949
Author(s):  
M. Alpha Raj ◽  
Y. Muralidhar ◽  
M. Sravanthi ◽  
T. N. V. K. V. Prasad ◽  
M. Nissipriya ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1005
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
Sandra Sevilla-Navarro ◽  
Maria Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-An Chiou ◽  
Jhen-Yang Syu ◽  
Sz-Ying Wu ◽  
Lian-Yu Lin ◽  
Li Tzu Yi ◽  
...  

AbstractElectrocardiogram (ECG)-based intelligent screening for systolic heart failure (HF) is an emerging method that could become a low-cost and rapid screening tool for early diagnosis of the disease before the comprehensive echocardiographic procedure. We collected 12-lead ECG signals from 900 systolic HF patients (ejection fraction, EF < 50%) and 900 individuals with normal EF in the absence of HF symptoms. The 12-lead ECG signals were converted by continuous wavelet transform (CWT) to 2D spectra and classified using a 2D convolutional neural network (CNN). The 2D CWT spectra of 12-lead ECG signals were trained separately in 12 identical 2D-CNN models. The 12-lead classification results of the 2D-CNN model revealed that Lead V6 had the highest accuracy (0.93), sensitivity (0.97), specificity (0.89), and f1 scores (0.94) in the testing dataset. We designed four comprehensive scoring methods to integrate the 12-lead classification results into a key diagnostic index. The highest quality result among these four methods was obtained when Leads V5 and V6 of the 12-lead ECG signals were combined. Our new 12-lead ECG signal–based intelligent screening method using straightforward combination of ECG leads provides a fast and accurate approach for pre-screening for systolic HF.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sandeep K. Gupta ◽  
Natalie A. Parlane ◽  
Dongwen Luo ◽  
Bernd H. A. Rehm ◽  
Axel Heiser ◽  
...  

AbstractMycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202–347-SOD1–72-Ag85B173–330-74F1–148+669–786 as a fusion (‘MAP fusion protein particle’). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.


2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


2005 ◽  
Vol 49 (1) ◽  
pp. 170-175 ◽  
Author(s):  
Åsa Sullivan ◽  
Aino Fianu-Jonasson ◽  
Britt-Marie Landgren ◽  
Carl Erik Nord

ABSTRACT The knowledge of the effects of antimicrobial agents on the normal vaginal microflora is limited. The objective of the present study was to study the ecological impact of pivmecillinam on the normal vaginal microflora. In 20 healthy women, the estimated day of ovulation was determined during three subsequent menstrual cycles. Microbiological and clinical examinations were performed on the estimated day of ovulation and on day 3 in all cycles and also on day 7 after ovulation in cycles 1 and 2. Anaerobic and facultative anaerobic gram-positive rods, mainly species of lactobacilli and actinomycetes, dominated the microflora. One woman was colonized on the third day of administration with a resistant Escherichia coli strain, and Candida albicans was detected in one woman on days 3 and 7 in cycle 2. No other major changes in the normal microflora occurred during the study. Administration of pivmecillinam had a minor ecological impact on the normal vaginal microflora.


2011 ◽  
Vol 175-176 ◽  
pp. 192-196 ◽  
Author(s):  
Li Li Feng ◽  
Jian Fei Zhang ◽  
Hui Luo ◽  
Zheng Li ◽  
Hong Jie Zhang

The paper concentrated on the optimization of the recombinant strain BL21 (DE3)-PE7-Nit. The component of culture medium and the culture conditions were optimized. The optimized medium was: yeast extract 10 g/l, L-glutamate sodium 8 g/l, MgSO4.7H2O 0.7 g/l, Isopropyl-β-D-thiogalactopyranoside 0.3 mmol/L, potassium hydrogen phosphate 0.5 g / L, phosphate Potassium 0.5 g / L and the culture condition was: initial pH 7.0, inoculum 2%. The result showed that the activity of nitrilase prepared with these conditions increased by 130.37 % through optimization.


Sign in / Sign up

Export Citation Format

Share Document