scholarly journals Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae

2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Tomas Erban ◽  
Ondrej Ledvinka ◽  
Marta Nesvorna ◽  
Jan Hubert

ABSTRACT Tyrophagus putrescentiae is inhabited by bacteria that differ among mite populations (strains) and diets. Here, we investigated how the microbiome and fitness of T. putrescentiae are altered by dietary perturbations and mite populations. Four T. putrescentiae populations, referred to as dog, Koppert, laboratory, and Phillips, underwent a perturbation, i.e., a dietary switch from a rearing diet to two experimental diets. The microbiome was investigated by sequencing the V1-V3 portion of the 16S rRNA gene, and selected bacterial taxa were quantified by quantitative PCR (qPCR) using group/taxon-specific primers. The parameters observed were the changes in mite population growth and nutritional status, i.e., the total glycogen, lipid, saccharide, and protein contents in mites. The effect of diet perturbation on the variability of the microbiome composition and population growth was lower than the effect induced by mite population. In contrast, the diet perturbation showed a greater effect on nutritional status of mites than the mite population. The endosymbionts exhibited high variations among T. putrescentiae populations, including Cardinium in the laboratory population, Blattabacterium-like bacteria in the dog population, and Wolbachia in the dog and Phillips populations. Solitalea-like and Bartonella-like bacteria were present in the dog, Koppert, and Phillips populations in different proportions. The T. putrescentiae microbiome is dynamic and varies based on both the mite population and perturbation; however, the mites remain characterized by robust bacterial communities. Bacterial endosymbionts were found in all populations but represented a dominant portion of the microbiome in only some populations. IMPORTANCE We addressed the question of whether population origin or perturbation exerts a more significant influence on the bacterial community of the stored product mite Tyrophagus putrescentiae. The microbiomes of four populations of T. putrescentiae insects subjected to diet perturbation were compared. Based on our results, the bacterial community was more affected by the mite population than by diet perturbation. This result can be interpreted as indicating high stability of the putative intracellular symbionts in response to dietary perturbation. The changes in the absolute and relative numbers of Wolbachia, Blattabacterium-like, Solitalea-like, and Cardinium bacteria in the T. putrescentiae populations can also be caused by neutral processes other than perturbation. When nutritional status is considered, the effect of population appeared less important than the perturbation. We hypothesize that differences in the proportions of the endosymbiotic bacteria result in changes in mite population growth.

2012 ◽  
Vol 78 (7) ◽  
pp. 2359-2366 ◽  
Author(s):  
Merritt G. Gillilland ◽  
John R. Erb-Downward ◽  
Christine M. Bassis ◽  
Michael C. Shen ◽  
Galen B. Toews ◽  
...  

ABSTRACTLittle is known about the dynamics of early ecological succession during experimental conventionalization of the gastrointestinal (GI) tract; thus, we measured changes in bacterial communities over time, at two different mucosal sites (cecum and jejunum), with germfree C57BL/6 mice as the recipients of cecal contents (input community) from a C57BL/6 donor mouse. Bacterial communities were monitored using pyrosequencing of 16S rRNA gene amplicon libraries from the cecum and jejunum and analyzed by a variety of ecological metrics. Bacterial communities, at day 1 postconventionalization, in the cecum and jejunum had lower diversity and were distinct from the input community (dominated by eitherEscherichiaorBacteroides). However, by days 7 and 21, the recipient communities had become significantly diverse and the cecal communities resembled those of the donor and donor littermates, confirming that transfer of cecal contents results in reassembly of the community in the cecum 7 to 21 days later. However, bacterial communities in the recipient jejunum displayed significant structural heterogeneity compared to each other or the donor inoculum or the donor littermates, suggesting that the bacterial community of the jejunum is more dynamic during the first 21 days of conventionalization. This report demonstrates that (i) mature input communities do not simply reassemble at mucosal sites during conventionalization (they first transform into a “pioneering” community and over time take on the appearance, in membership and structure, of the original input community) and (ii) the specific mucosal environment plays a role in shaping the community.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Tengxiang Lian ◽  
Yingyong Huang ◽  
Xianan Xie ◽  
Xing Huo ◽  
Muhammad Qasim Shahid ◽  
...  

ABSTRACT Some plant-specific resistance genes could affect rhizosphere microorganisms by regulating the release of root exudates. In a previous study, the SST (seedling salt tolerant) gene in rice (Oryza sativa) was identified, and loss of SST function resulted in better plant adaptation to salt stress. However, whether the rice SST variation could alleviate salt stress via regulating soil metabolites and microbiota in the rhizosphere is still unknown. Here, we used transgenic plants with SST edited in the Huanghuazhan (HHZ) and Zhonghua 11 (ZH11) cultivars by the CRISPR/Cas9 system and found that loss of SST function increased the accumulation of potassium and reduced the accumulation of sodium ions in rice plants. Using 16S rRNA gene amplicon high-throughput sequencing, we found that the mutant material shifted the rhizobacterial assembly under salt-free stress. Importantly, under salt stress, the sst, HHZcas, and ZH11cas plants significantly changed the assembly of the rhizobacteria. Furthermore, the rice SST gene also affected the soil metabolites, which were closely related to the dynamics of rhizosphere microbial communities, and we further determined the relationship between the rhizosphere microbiota and soil metabolites. Overall, our results show the effects of the rice SST gene on the response to salt stress associated with the soil microbiota and metabolites in the rhizosphere. This study reveals a helpful linkage among the rice SST gene, soil metabolites, and rhizobacterial community assembly and also provides a theoretical basis for improving crop adaptation through soil microbial management practices. IMPORTANCE Soil salinization is one of the major environmental stresses limiting crop productivity. Crops in agricultural ecosystems have developed various strategies to adapt to salt stress. We used rice mutant and CRISPR-edited lines to investigate the relationships among the Squamosa promoter Binding Protein box (SBP box) family gene (SST/OsSPL10), soil metabolites, and the rhizosphere bacterial community. We found that during salt stress, there are significant differences in the rhizosphere bacterial community and soil metabolites between the plants with the SST gene and those without it. Our findings provide a useful paradigm for revealing the roles of key genes of plants in shaping rhizosphere microbiomes and their relationships with soil metabolites and offer new insights into strategies to enhance rice tolerance to high salt levels from microbial and ecological perspectives.


2011 ◽  
Vol 77 (14) ◽  
pp. 4924-4930 ◽  
Author(s):  
Max Kolton ◽  
Yael Meller Harel ◽  
Zohar Pasternak ◽  
Ellen R. Graber ◽  
Yigal Elad ◽  
...  

ABSTRACTAdding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuumL.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with theProteobacteria,Bacteroidetes,Actinobacteria, andFirmicutesphyla. The relative abundance of members of theBacteroidetesphylum increased from 12 to 30% as a result of biochar amendment, while that of theProteobacteriadecreased from 71 to 47%. TheBacteroidetes-affiliatedFlavobacteriumwas the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (ChitinophagaandCellvibrio, respectively) and aromatic compound degraders (HydrogenophagaandDechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.


2012 ◽  
Vol 78 (8) ◽  
pp. 2758-2767 ◽  
Author(s):  
Christine Schauer ◽  
Claire L. Thompson ◽  
Andreas Brune

ABSTRACTTermites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut ofShelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon—the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of theBacteroidetes,Firmicutes(mainlyClostridia), and someDeltaproteobacteria. SpirochaetesandFibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Olivia Konen ◽  
Kristin Peters ◽  
Petra Tsuji

Abstract Objectives The goal of this study is to compare the microbiome of domesticated horses with and without probiotic supplementation. Methods Our University's Institutional Animal Care and Use Committee has granted an exemption, as the horses were not housed on campus and there was no experimental manipulation to the horses’ feeding implemented. Fecal matter from six privately owned horses maintained on their standard grazing diet were collected. Three of the six horses received a probiotic supplement, SmartDigest, for several years prior to beginning the project. Supplementation ceased for one month, and samples were again obtained. The other three horses never received probiotics. Bacterial DNA was isolated from all fecal samples, the 16S rRNA gene amplified, tagged with index primers, and subsequently sequenced using the Illumina MiSeq. Results Dominant groups from non-supplemented horses residing on the same property included the phyla bacteriodetes, firmicutes, proteobacteria, and verrucomicrobia. Interestingly, Sphingobacterium bambusae was identified in all three horses, even though this species has previously been isolated from the soil of bamboo plantations. Currently, samples from horses with probiotics are being analyzed. We are also employing qPCR analysis to validate the NextGen data, and to further investigate relative abundance of specific bacterial groups relevant to equine intestinal health. Conclusions Preliminary NextGen sequence analysis of the relative abundance of bacterial phyla suggests that, as expected, the horses residing on the same property and thus receiving the same diet possess a similar intestinal microbiome composition. Similarities between horses persist down to the genus level, and are now being compared to samples from horses on a probiotic-supplemented diet. Funding Sources Financial support was provided by Towson University's Fisher College of Science and Mathematics, and Jess and Mildred Fisher Endowed Chair funds to P. Tsuji.


2016 ◽  
Vol 82 (12) ◽  
pp. 3525-3536 ◽  
Author(s):  
Nikea Ulrich ◽  
Abigail Rosenberger ◽  
Colin Brislawn ◽  
Justin Wright ◽  
Collin Kessler ◽  
...  

ABSTRACTBacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in whichBetaproteobacteriaandGammaproteobacteriadecreased in 16S rRNA gene relative abundance, while the relative abundance of members of theFirmicutesincreased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains ofLegionella,Campylobacter,Arcobacter, andHelicobacter, as well as bacteria of fecal origin (e.g.,Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event.IMPORTANCEIn order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment.


2015 ◽  
Vol 81 (24) ◽  
pp. 8489-8499 ◽  
Author(s):  
Barbara U. Metzler-Zebeli ◽  
Stephan Schmitz-Esser ◽  
Evelyne Mann ◽  
Dietmar Grüll ◽  
Timea Molnar ◽  
...  

ABSTRACTResistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n= 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses andKmeans clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla,Firmicutes(55%),Proteobacteria(35%), andBacteroidetes(10%). The EMS diet decreased abundance ofRuminococcus,Parasutterella,Bilophila,Enterococcus, andLactobacillusoperational taxonomic units (OTU), whereasMeniscusandActinobacillusOTU were increased compared to those with the control diet (P< 0.05). Quantitative PCR confirmed results for host effect onEnterobacteriaceaeand diet effect on members of theLactobacillusgroup. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS.


2015 ◽  
Vol 81 (14) ◽  
pp. 4697-4710 ◽  
Author(s):  
Kelsea A. Jewell ◽  
Caroline A. McCormick ◽  
Christine L. Odt ◽  
Paul J. Weimer ◽  
Garret Suen

ABSTRACTFourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows wereBacteroidetes(49.42%),Firmicutes(39.32%),Proteobacteria(5.67%), andTenericutes(2.17%), and the most abundant genera includedPrevotella(40.15%),Butyrivibrio(2.38%),Ruminococcus(2.35%),Coprococcus(2.29%), andSucciniclasticum(2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles.


2011 ◽  
Vol 77 (18) ◽  
pp. 6653-6662 ◽  
Author(s):  
A. Corrigan ◽  
K. Horgan ◽  
N. Clipson ◽  
R. A. Murphy

ABSTRACTThis study investigated the effects of dietary supplementation with a prebiotic mannan oligosaccharide (MOS) on broiler performance, bacterial community structure, and phylogenetic populations of cecal contents. Bird performance data were collected, and cecal samples were extracted from randomly caught poults from each treatment group every 7 days from hatching to the age of 42 days. Weight gain, feed consumption, and feed efficiency ratios did not differ significantly between groups. Automated ribosomal intergenic spacer analysis (ARISA) of the bacterial communities in birds receiving MOS-supplemented diets indicated that dietary supplementation with MOS at either of 2 levels significantly altered the bacterial community structure from that of the control group on all sample days. The phylogenetic identities of bacteria contained within the cecum were determined by constructing a 16S rRNA gene clone library. A total of 594 partial 16S rRNA gene sequences from the cecal contents were analyzed and compared for the three dietary treatments. The dominant bacteria of the cecum belonged to three phyla,Firmicutes,Bacteroidetes, andProteobacteria; of these,Firmicuteswere the most dominant in all treatment groups. Statistical analysis of the bacterial 16S rRNA gene clone libraries showed that the compositions of the clone libraries from broilers receiving MOS-supplemented diets were, in most cases, significantly different from that of the control group. It can be concluded that in this trial MOS supplementation significantly altered the cecal bacterial community structure.


2015 ◽  
Vol 81 (19) ◽  
pp. 6589-6600 ◽  
Author(s):  
Jenifer B. Walke ◽  
Matthew H. Becker ◽  
Myra C. Hughey ◽  
Meredith C. Swartwout ◽  
Roderick V. Jensen ◽  
...  

ABSTRACTCurrently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogenBatrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened byB. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health.


Sign in / Sign up

Export Citation Format

Share Document