scholarly journals Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species Fusarium subglutinans and Fusarium temperatum

2020 ◽  
Vol 86 (13) ◽  
Author(s):  
M. Veronica Fumero ◽  
Alessandra Villani ◽  
Antonia Susca ◽  
Miriam Haidukowski ◽  
Maria T. Cimmarusti ◽  
...  

ABSTRACT Fusarium subglutinans and Fusarium temperatum are common maize pathogens that produce mycotoxins and cause plant disease. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant. Our objective was to clarify this situation by determining both the chemotypes and genotypes for strains from both species. We analyzed 25 strains from Argentina, 13 F. subglutinans and 12 F. temperatum strains, for toxin production by ultraperformance liquid chromatography mass spectrometry (UPLC-MS). We used new genome sequences from two strains of F. subglutinans and one strain of F. temperatum, plus genomes of other Fusarium species, to determine the presence of functional gene clusters for the synthesis of these toxins. None of the strains examined from either species produced fumonisins. These strains also lack Fum biosynthetic genes but retain homologs of some genes that flank the Fum cluster in Fusarium verticillioides. None of the F. subglutinans strains we examined produced beauvericin although 9 of 12 F. temperatum strains did. A complete beauvericin (Bea) gene cluster was present in all three new genome sequences. The Bea1 gene was presumably functional in F. temperatum but was not functional in F. subglutinans due to a large insertion and multiple mutations that resulted in premature stop codons. The accumulation of only a few mutations expected to disrupt Bea1 suggests that the process of its inactivation is relatively recent. Thus, none of the strains of F. subglutinans or F. temperatum we examined produce fumonisins, and the strains of F. subglutinans examined also cannot produce beauvericin. Variation in the ability of strains of F. temperatum to produce beauvericin requires further study and could reflect the recent shared ancestry of these two species. IMPORTANCE Fusarium subglutinans and F. temperatum are sister species and maize pathogens commonly isolated worldwide that can produce several mycotoxins and cause seedling disease, stalk rot, and ear rot. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant at the species level. Our results are consistent with previous reports that strains of F. subglutinans produce neither fumonisins nor beauvericin. The status of toxin production by F. temperatum needs further work. Our strains of F. temperatum did not produce fumonisins, while some strains produced beauvericin and others did not. These results enable more accurate risk assessments of potential mycotoxin contamination if strains of these species are present. The nature of the genetic inactivation of BEA1 is consistent with its relatively recent occurrence and the close phylogenetic relationship of the two sister species.

2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
...  

ABSTRACT Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro. We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes.


Author(s):  
Adrien Biessy ◽  
Marie Ciotola ◽  
Mélanie Cadieux ◽  
Daphné Albert ◽  
Martin Filion

Numerous bacterial strains from the Burkholderia cepacia complex display biocontrol activity. Here, we report the complete genome sequences of five Burkholderia strains isolated from soil. Biosynthetic gene clusters responsible for the production of antimicrobial compounds were found in the genome of these strains, which display biocontrol activity against various lettuce pathogens.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1283 ◽  
Author(s):  
Akos Mesterhazy ◽  
Eva Toldine Toth ◽  
Sandor Szel ◽  
Monika Varga ◽  
Beata Toth

Testing Fusarium resistance to ear rots in maize requires a well-supported methodology and tests for toxin responses. In this study, commercial hybrids were tested for resistance to Fusarium graminearum, Fusarium culmorum, and Fusarium verticillioides (kernel and silk channel), as well as their toxin response. One third of the hybrids tested showed a similar resistance or susceptibility to the three pathogens and their toxin response, but there is no proof for their genetic background being the same or different. The performance of the remaining hybrids was highly variable and supports the idea of different genetic regulation. The mean ear rot severity of the kernel resistance was doubled compared with the silk channel resistance data. The ear rot and toxin tests displayed significant positive correlations, verifying the decisive role of resistance in toxin regulation. Several hybrids, termed toxigenic hybrids, showed significant extra toxin production, indicating an additional food safety risk. The toothpick method gave more reliable results and a better differentiation of genotypes. The resistance to different Fusarium spp. in a specific growing region should be analyzed separately in independent resistance tests. Through this, the food safety risks could be better identified. Susceptible hybrids should not be used for commercial production.


2018 ◽  
Vol 7 (8) ◽  
Author(s):  
Donald M. Gardiner

Fusarium verticillioides is an important pathogen of maize worldwide. Here, three Australian isolates of F. verticillioides, originally obtained from maize or sorghum, were sequenced using Illumina technology to expand the available genomic resources for this important pathogen.


2018 ◽  
Vol 60 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Ł. Stępień ◽  
K. Gromadzka ◽  
J. Chełkowski ◽  
A. Basińska-Barczak ◽  
J. Lalak-Kańczugowska

2015 ◽  
Vol 81 (20) ◽  
pp. 7290-7304 ◽  
Author(s):  
Analice C. Azevedo ◽  
Cláudia B. P. Bento ◽  
Jeronimo C. Ruiz ◽  
Marisa V. Queiroz ◽  
Hilário C. Mantovani

ABSTRACTSome species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based onin vitroassays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains ofStreptococcus(66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of theRuminococcus albusstrains screened in this study. Thein silicoanalysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.


2019 ◽  
Vol 8 (26) ◽  
Author(s):  
Jennifer Niem ◽  
Regina Billones-Baaijens ◽  
Sandra Savocchia ◽  
Benjamin Stodart

Endophytic strains of Pseudomonas were isolated from grapevine tissues and exhibited antagonistic activity against several grapevine trunk disease pathogens. The draft genome sequences of the four strains revealed the presence of putative gene clusters that may impart biocontrol activity against plant pathogens.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1161
Author(s):  
Andrés Gustavo Jacquat ◽  
Martín Gustavo Theumer ◽  
María Carmen Cañizares ◽  
Humberto Julio Debat ◽  
Juliana Iglesias ◽  
...  

Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides pathogenicity and toxin production worth further exploring.


2014 ◽  
Vol 13 (7) ◽  
pp. 909-918 ◽  
Author(s):  
Nan Lan ◽  
Hanxing Zhang ◽  
Chengcheng Hu ◽  
Wenzhao Wang ◽  
Ana M. Calvo ◽  
...  

ABSTRACTVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogenFusarium verticillioides, previous studies showed that the velvet proteinF. verticillioidesVE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteinsF. verticillioidesVelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene,F. verticillioidesCAT2(FvCAT2). Deletion ofFvCAT2resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.


2020 ◽  
Vol 9 (50) ◽  
Author(s):  
Yunci Qi ◽  
Keshav K. Nepal ◽  
Jennifer Greif ◽  
Cole Martini ◽  
Chad Tomlinson ◽  
...  

ABSTRACT Here, we report the draft genome sequences of two related Streptomyces sp. strains, JV180 and SP18CM02. Despite their isolation from soils in Connecticut and Missouri (USA), respectively, they are strikingly similar in gene content. Both belong to the Streptomyces griseus clade and harbor several secondary metabolite biosynthetic gene clusters.


Sign in / Sign up

Export Citation Format

Share Document