scholarly journals Potentially Human-Pathogenic Escherichia coli O26 in Norwegian Sheep Flocks

2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.

2013 ◽  
Vol 79 (23) ◽  
pp. 7502-7509 ◽  
Author(s):  
Camilla Sekse ◽  
Marianne Sunde ◽  
Petter Hopp ◽  
Torkjel Bruheim ◽  
Kofitsyo Sewornu Cudjoe ◽  
...  

ABSTRACTThe investigation of an outbreak of hemorrhagic-uremic syndrome in Norway in 2006 indicated that the outbreak strainEscherichia coliO103:H25 could originate from sheep. A national survey of the Norwegian sheep population was performed, with the aim of identifying and describing a possible reservoir of potentially human-pathogenicE. coliO103, in particular of the H types 2 and 25. The investigation of fecal samples from 585 sheep flocks resulted in 1,222E. coliO103 isolates that were analyzed for the presence ofeaeandstxgenes, while a subset of 369 isolates was further examined for flagellar antigens (H typing),stxsubtypes,bfpA,astA, and molecular typing by pulsed-field gel electrophoresis (PFGE). The total ovineE. coliO103 serogroup was genetically diverse by numbers of H types, virulotypes, and PFGE banding patterns identified, although a tendency of clustering toward serotypes was seen. The flocks positive for potentially human-pathogenicE. coliO103 were geographically widely distributed, and no association could be found with county or geographical region. The survey showed thateae-negative,stx-negativeE. coliO103, probably nonpathogenic to humans, is very common in sheep, with 27.5% of flocks positive. Moreover, the study documented a low prevalence (0.7%) of potentially human-pathogenic Shiga toxin-producingE. coliO103:H2, while STEC O103:H25 was not detected. However, 3.1% and 5.8% of the flocks were positive for enteropathogenicE. coliO103 belonging to H types 2 and 25, respectively. These isolates are of concern as potential human pathogens by themselves but more importantly as possible precursors for human-pathogenic STEC.


2012 ◽  
Vol 78 (12) ◽  
pp. 4083-4091 ◽  
Author(s):  
Lin T. Brandal ◽  
Camilla Sekse ◽  
Bjørn-Arne Lindstedt ◽  
Marianne Sunde ◽  
Inger Løbersli ◽  
...  

ABSTRACTA previous national survey ofEscherichia coliin Norwegian sheep detectedeae-positive (eae+)E. coliO26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them withE. coliO26 isolates from humans infected in Norway. All humanE. coliO26 isolates studied carried theeaegene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containingarcAallele type 2 andespKand were classified as enterohemorrhagicE. coli(EHEC) (stxpositive) or EHEC-like (stxnegative). These isolates were further divided into group A (EspK2 positive), associated withstx2-EDL933andstcEO103, and group B (EspK1 positive), associated withstx1a. Although thestxgenes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen instx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquirestx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenicE. coli(aEPEC):arcAallele type 1 andespKnegative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen inE. coliO26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenicE. coliO26:H11 isolates in Norway.


2015 ◽  
Vol 78 (2) ◽  
pp. 256-263 ◽  
Author(s):  
XIANQIN YANG ◽  
MADHU BADONI ◽  
FRANCES TRAN ◽  
COLIN O. GILL

To investigate the microbiological effects of a hide-on carcass decontaminating treatment recently implemented at a beef packing plant, carcasses undergoing routine processing at the plant were sampled during successive periods in January/February, April/May, and September/October. During each period, samples were collected from carcasses before and after the decontamination of hide-on carcasses, after skinning, before decontamination of the skinned carcasses, and at the end of the carcass dressing process. At each stage of processing during each period, samples were obtained by swabbing an area of 1,000 cm2 on each of 25 carcasses. Aerobes, coliforms, and Escherichia coli were enumerated. In most samples, coliforms were predominantly E. coli. In all three periods, the log mean numbers of aerobes and E. coli recovered from hides before decontamination were between 6.6 and 6.8 and between 5.3 and 5.9 log CFU/1,000 cm2, respectively. The log mean numbers of aerobes recovered from decontaminated hides were 6.6 log CFU/1,000 cm2 in January/February and April/May but 5.4 log CFU/1,000 cm2 in September/October. The log total numbers of E. coli recovered from decontaminated hides in January/February and April/May were 2.4 and 3.8 log CFU/25,000 cm2, respectively, but no E. coli was recovered from such carcasses in September/October. Log total numbers of aerobes and E. coli recovered from skinned or dressed carcasses were mostly >4 and between 1 and 2 log CFU/25,000 cm2, respectively. Typing of 480 E. coli isolates by multiple-locus variable-number tandem repeat analysis (MLVA) identified 218 MLVA types. Most isolates recovered from carcasses in different periods or at different stages of processing were of different MLVA types. However, small numbers of MLVA types were recovered in more than one period or from both hides before and after decontamination and skinned or dressed carcasses. The findings show that the hide-decontaminating treatment disrupted the usual transfer of E. coli from hides to meat surfaces during carcass skinning.


2014 ◽  
Vol 53 (2) ◽  
pp. 486-492 ◽  
Author(s):  
Sabine Delannoy ◽  
Patricia Mariani-Kurkdjian ◽  
Stephane Bonacorsi ◽  
Sandrine Liguori ◽  
Patrick Fach

Strains ofEscherichia coliO26:H11 that were positive forstx2alone (n= 23), which were not epidemiologically related or part of an outbreak, were isolated from pediatric patients in France between 2010 and 2013. We were interested in comparing these strains with the new highly virulentstx2a-positiveE. coliO26 clone sequence type 29 (ST29) that has emerged recently in Europe, and we tested them by multilocus sequence typing (MLST),stx2subtyping, clustered regularly interspaced short palindromic repeat (CRISPR) sequencing, and plasmid (ehxA,katP,espP, andetpD) and chromosomal (Z2098,espK, andespV) virulence gene profiling. We showed that 16 of the 23 strains appeared to correspond to this new clone, but the characteristics of 12 strains differed significantly from the previously described characteristics, with negative results for both plasmid and chromosomal genetic markers. These 12 strains exhibited a ST29 genotype and related CRISPR arrays (CRISPR2a alleles 67 or 71), suggesting that they evolved in a common environment. This finding was corroborated by the presence ofstx2din 7 of the 12 ST29 strains. This is the first time thatE. coliO26:H11 carryingstx2dhas been isolated from humans. This is additional evidence of the continuing evolution of virulent Shiga toxin-producingE. coli(STEC) O26 strains. A new O26:H11 CRISPR PCR assay, SP_O26_E, has been developed for detection of these 12 particular ST29 strains ofE. coliO26:H11. This test is useful to better characterize thestx2-positive O26:H11 clinical isolates, which are associated with severe clinical outcomes such as bloody diarrhea and hemolytic uremic syndrome.


2018 ◽  
Vol 7 (7) ◽  
Author(s):  
Aixia Xu ◽  
Shannon Tilman ◽  
Kristy Wisser-Parker ◽  
O. Joseph Scullen ◽  
Christopher H. Sommers

Extraintestinal pathogenic Escherichia coli strains were isolated from retail chicken skin. Here, we report the draft genomic sequences for these nine E. coli isolates, which are currently being used in agricultural and food safety research.


2013 ◽  
Vol 79 (15) ◽  
pp. 4613-4619 ◽  
Author(s):  
Patrick Studer ◽  
Werner E. Heller ◽  
Jörg Hummerjohann ◽  
David Drissner

ABSTRACTSprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated withEscherichia coliO157:H7,Salmonella entericasubsp.entericaserovar Weltevreden, andListeria monocytogenesScott A. In addition, a recently collectedE. coliO178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations ofE. coliO157:H7 andS. entericaon alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies.L. monocytogenesandE. coliO178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).


2012 ◽  
Vol 81 (3) ◽  
pp. 838-849 ◽  
Author(s):  
Francis Dziva ◽  
Heidi Hauser ◽  
Thomas R. Connor ◽  
Pauline M. van Diemen ◽  
Graham Prescott ◽  
...  

ABSTRACTAvian pathogenicEscherichia coli(APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resemblesE. colicausing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenicE. coli(ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity ofE. colistrains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution ofE. colistrains adapted to cause avian or human disease via acquisition of distinct virulence genes.


2019 ◽  
Vol 32 (3) ◽  
Author(s):  
Amee R. Manges ◽  
Hyun Min Geum ◽  
Alice Guo ◽  
Thaddeus J. Edens ◽  
Chad D. Fibke ◽  
...  

SUMMARY Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.


2018 ◽  
Vol 6 (21) ◽  
Author(s):  
Aixia Xu ◽  
James R. Johnson ◽  
Shiowshuh Sheen ◽  
David S. Needleman ◽  
Christopher Sommers

ABSTRACT Potential extraintestinal pathogenic Escherichia coli strains DP254, WH333, WH398, F356, FEX675, and FEX725 were isolated from retail chicken meat products. Here, we report the draft genome sequences for these six E. coli isolates, which are currently being used in food safety research.


2012 ◽  
Vol 78 (16) ◽  
pp. 5536-5541 ◽  
Author(s):  
E. M. Anastasi ◽  
B. Matthews ◽  
H. M. Stratton ◽  
M. Katouli

ABSTRACTWe previously demonstrated that someEscherichia colistrains with uropathogenic properties survived treatment stages of sewage treatment plants (STPs), suggesting that they may be released into the environment. We investigated the presence of such strains in the surrounding environmental waters of four STPs from which these persistent strains were isolated. In all, 264E. coliisolates were collected from 129 receiving water sites in a 20-km radius surrounding STPs. We also included 93E. colistrains collected from 18 animal species for comparison. Isolates were typed using a high-resolution biochemical fingerprinting method (the PhPlate system), and grouped into common (C) types. One hundred forty-seven (56%) environmental isolates were identical to strains found in STPs' final effluents. Of these, 140 (95%) carried virulence genes (VGs) associated with intestinal pathogenicE. coli(IPEC) or uropathogenicE. coli(UPEC) and were found in a variety of sites within areas sampled. Of the remaining 117 environmental strains not identical to STP strains, 105 belonged to 18 C types and 102 of them carried VGs found among IPEC or UPEC strains. These strains belonged mainly to phylogenetic groups A (A0 and A1) and B1 and to a lesser extent B22, B23, D1, and D2. Eight of 18 environmental C types, comprising 50 isolates, were also identical to bird strains. The presence of a high percentage of environmentalE. coliin waters near STPs carrying VGs associated with IPEC and UPEC suggests that they may have derived from STP effluents and other nonpoint sources.


Sign in / Sign up

Export Citation Format

Share Document