scholarly journals Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere

2020 ◽  
Vol 86 (15) ◽  
Author(s):  
Lindsey O’Neal ◽  
Lam Vo ◽  
Gladys Alexandre

ABSTRACT Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilense causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilense with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization. IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots.

Parasitology ◽  
1991 ◽  
Vol 103 (1) ◽  
pp. 149-155 ◽  
Author(s):  
F. Grundler ◽  
L. Schnibbe ◽  
U. Wyss

The behaviour of Heterodera schachtii second-stage juveniles in response to mustard (Sinapis alba) rooxudates was observed and analysed under aseptic conditions in a standardized bioassay. Aggregation of juveniles on an agarose layer occurred within less than 30 min in the area where root exudates had been applied and persisted for several hours. Analysis of time-lapse video recordings showed that the aggregation did not result from a directed orientation of the juvenile towards the root exudate. This was supported by an orientation assay using single juveniles. Aggregated juveniles showed pre-infection exploratory behaviour, including stylet thrusting and head-end bending, while staying at rest for several minutes.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Alice Regaiolo ◽  
Nazzareno Dominelli ◽  
Karsten Andresen ◽  
Ralf Heermann

ABSTRACT The number of sustainable agriculture techniques to improve pest management and environmental safety is rising, as biological control agents are used to enhance disease resistance and abiotic stress tolerance in crops. Here, we investigated the capacity of the Photorhabdus luminescens secondary variant to react to plant root exudates and their behavior toward microorganisms in the rhizosphere. P. luminescens is known to live in symbiosis with entomopathogenic nematodes (EPNs) and to be highly pathogenic toward insects. The P. luminescens-EPN relationship has been widely studied, and this combination has been used as a biological control agent; however, not much attention has been paid to the putative lifestyle of P. luminescens in the rhizosphere. We performed transcriptome analysis to show how P. luminescens responds to plant root exudates. The analysis highlighted genes involved in chitin degradation, biofilm regulation, formation of flagella, and type VI secretion system. Furthermore, we provide evidence that P. luminescens can inhibit growth of phytopathogenic fungi. Finally, we demonstrated a specific interaction of P. luminescens with plant roots. Understanding the role and the function of this bacterium in the rhizosphere might accelerate the progress in biocontrol manipulation and elucidate the peculiar mechanisms adopted by plant growth-promoting rhizobacteria in plant root interactions. IMPORTANCE Insect-pathogenic Photorhabdus luminescens bacteria are widely used in biocontrol strategies against pests. Very little is known about the life of these bacteria in the rhizosphere. Here, we show that P. luminescens can specifically react to and interact with plant roots. Understanding the adaptation of P. luminescens in the rhizosphere is highly important for the biotechnological application of entomopathogenic bacteria and could improve future sustainable pest management in agriculture.


2015 ◽  
Vol 81 (21) ◽  
pp. 7484-7495 ◽  
Author(s):  
Pauline Woan Ying Liew ◽  
Bor Chyan Jong ◽  
Nazalan Najimudin

ABSTRACTA proteomic analysis of a soil-dwelling, plant growth-promotingAzotobacter vinelandiistrain showed the presence of a protein encoded by the hypotheticalAvin_16040gene when the bacterial cells were attached to theOryza sativaroot surface. AnAvin_16040deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type.Escherichia colitransformed with the wild-typeAvin_16040gene displayed on its cell surface organized motifs which looked like the S-layer monomers ofA. vinelandii. The recombinantE. colialso demonstrated enhanced adhesion to the root surface.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 267-275 ◽  
Author(s):  
Xing-Feng Huang ◽  
Jacqueline M. Chaparro ◽  
Kenneth F. Reardon ◽  
Ruifu Zhang ◽  
Qirong Shen ◽  
...  

The study of the interactions between plants and their microbial communities in the rhizosphere is important for developing sustainable management practices and agricultural products such as biofertilizers and biopesticides. Plant roots release a broad variety of chemical compounds to attract and select microorganisms in the rhizosphere. In turn, these plant-associated microorganisms, via different mechanisms, influence plant health and growth. In this review, we summarize recent progress made in unraveling the interactions between plants and rhizosphere microbes through plant root exudates, focusing on how root exudate compounds mediate rhizospheric interactions both at the plant–microbe and plant–microbiome levels. We also discuss the potential of root exudates for harnessing rhizospheric interactions with microbes that could lead to sustainable agricultural practices.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Alessandra Guerrieri ◽  
Kristýna Floková ◽  
Lieke E. Vlaar ◽  
Mario L. Schilder ◽  
Gertjan Kramer ◽  
...  

Abstract Main conclusion Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity. Abstract Potato cyst nematode (PCN) is a plant root sedentary endoparasite, specialized in the infection of solanaceous species such as potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Earlier reports (Mulder et al. in Hatching agent for the potato cyst nematode, Patent application No. PCT/NL92/00126, 1996; Schenk et al. in Croat Chem Acta 72:593–606, 1999) showed that solanoeclepin A (SolA), a triterpenoid metabolite that was isolated from the root exudate of potato, induces the hatching of PCN. Its low concentration in potato root exudate has hindered progress in fully understanding its hatching inducing activity and exploitation in the control of PCN. To further investigate the role of SolA in hatching of PCN, the establishment of a highly sensitive analytical method is a prerequisite. Here we present the efficient single-step extraction and UHPLC-MS/MS based analysis for rapid determination of SolA in sub-nanomolar concentrations in tomato root exudate. This method was used to analyze SolA production in different tomato cultivars and related solanaceous species, including the trap crop Solanum sisymbriifolium. Hatching assays with PCN, Globodera pallida, with root exudates of tomato genotypes revealed a significant positive correlation between SolA concentration and hatching activity. Our results demonstrate that there is natural variation in SolA production within solanaceous species and that this has an effect on PCN hatching. The analytical method we have developed can potentially be used to support breeding for crop genotypes that induce less hatching and may therefore display reduced infection by PCN.


2016 ◽  
Vol 198 (12) ◽  
pp. 1764-1772 ◽  
Author(s):  
Tanmoy Mukherjee ◽  
Dhivya Kumar ◽  
Nathan Burriss ◽  
Zhihong Xie ◽  
Gladys Alexandre

ABSTRACTThe genomes of most motile bacteria encode two or more chemotaxis (Che) systems, but their functions have been characterized in only a few model systems.Azospirillum brasilenseis a motile soil alphaproteobacterium able to colonize the rhizosphere of cereals. In response to an attractant, motileA. brasilensecells transiently increase swimming speed and suppress reversals. The Che1 chemotaxis pathway was previously shown to regulate changes in the swimming speed, but it has a minor role in chemotaxis and root surface colonization. Here, we show that a second chemotaxis system, named Che4, regulates the probability of swimming reversals and is the major signaling pathway for chemotaxis and wheat root surface colonization. Experimental evidence indicates that Che1 and Che4 are functionally linked to coordinate changes in the swimming motility pattern in response to attractants. The effect of Che1 on swimming speed is shown to enhance the aerotactic response ofA. brasilensein gradients, likely providing the cells with a competitive advantage in the rhizosphere. Together, the results illustrate a novel mechanism by which motile bacteria utilize two chemotaxis pathways regulating distinct motility parameters to alter movement in gradients and enhance the chemotactic advantage.IMPORTANCEChemotaxis provides motile bacteria with a competitive advantage in the colonization of diverse niches and is a function enriched in rhizosphere bacterial communities, with most species possessing at least two chemotaxis systems. Here, we identify the mechanism by which cells may derive a significant chemotactic advantage using two chemotaxis pathways that ultimately regulate distinct motility parameters.


2021 ◽  
Vol 7 (2) ◽  
pp. 148
Author(s):  
Aurora Patchett ◽  
Jonathan A. Newman

Lolium perenne infected with the fungal endophyte Epichloë festucae var. lolii have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests. However, the use of new methodologies, such as various omic techniques, has demonstrated that many other chemical changes occur in both primary and secondary metabolites. Few studies have investigated changes in plant metabolites exiting the plant in the form of root exudates. As root exudates play an essential role in the acquisition of nutrients, microbial associations, and defense in the below-ground environment, it is of interest to understand how plant root exudate chemistry is influenced by the presence of strains of a fungal endophyte. In this study, we tested the influence of four strains of E. festucae var. lolii (E+ (also known as Lp19), AR1, AR37, NEA2), and uninfected controls (E−), on L. perenne growth and the composition of root exudate metabolites. Root exudates present in the hydroponic water were assessed by untargeted metabolomics using Accurate-Mass Quadrupole Time-of-Flight (Q–TOF) liquid chromatography–mass spectrometry (LC–MS). The NEA2 endophyte strain resulted in the greatest plant biomass and the lowest endophyte concentration. We found 84 metabolites that were differentially expressed in at least one of the endophyte treatments compared to E− plants. Two compounds were strongly associated with one endophyte treatment, one in AR37 (m/z 135.0546 RT 1.17), and one in E+ (m/z 517.1987 RT 9.26). These results provide evidence for important changes in L. perenne physiology in the presence of different fungal endophyte strains. Further research should aim to connect changes in root exudate chemical composition with soil ecosystem processes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Deborah Elizabeth Cox ◽  
Steven Dyer ◽  
Ryan Weir ◽  
Xavier Cheseto ◽  
Matthew Sturrock ◽  
...  

AbstractPlants are master regulators of rhizosphere ecology, secreting a complex mixture of compounds into the soil, collectively termed plant root exudate. Root exudate composition is highly dynamic and functional, mediating economically important interactions between plants and a wide range of soil organisms. Currently we know very little about the molecular basis of root exudate composition, which is a key hurdle to functional exploitation of root exudates for crop improvement. Root expressed transporters modulate exudate composition and could be manipulated to develop beneficial plant root exudate traits. Using Virus Induced Gene silencing (VIGS), we demonstrate that knockdown of two root-expressed ABC transporter genes in tomato cv. Moneymaker, ABC-C6 and ABC-G33, alters the composition of semi-volatile compounds in collected root exudates. Root exudate chemotaxis assays demonstrate that knockdown of each transporter gene triggers the repulsion of economically relevant Meloidogyne and Globodera spp. plant parasitic nematodes, which are attracted to control treatment root exudates. Knockdown of ABC-C6 inhibits egg hatching of Meloidogyne and Globodera spp., relative to controls. Knockdown of ABC-G33 has no impact on egg hatching of Meloidogyne spp. but has a substantial inhibitory impact on egg hatching of G. pallida. ABC-C6 knockdown has no impact on the attraction of the plant pathogen Agrobacterium tumefaciens, or the plant growth promoting Bacillus subtilis, relative to controls. Silencing ABC-G33 induces a statistically significant reduction in attraction of B. subtilis, with no impact on attraction of A. tumefaciens. By inoculating selected differentially exuded compounds into control root exudates, we demonstrate that hexadecaonic acid and pentadecane are biologically relevant parasite repellents. ABC-C6 represents a promising target for breeding or biotechnology intervention strategies as gene knockdown leads to the repulsion of economically important plant parasites and retains attraction of the beneficial rhizobacterium B. subtilis. This study exposes the link between ABC transporters, root exudate composition, and ex planta interactions with agriculturally and economically relevant rhizosphere organisms, paving the way for new approaches to rhizosphere engineering and crop protection.


2014 ◽  
Vol 80 (18) ◽  
pp. 5572-5582 ◽  
Author(s):  
Jessica Grote ◽  
Dagmar Krysciak ◽  
Andrea Schorn ◽  
Renate I. Dahlke ◽  
Liina Soonvald ◽  
...  

ABSTRACTPopulations of genetically identicalSinorhizobium frediiNGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genestraIandngrIshowed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations ofN-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-ΔtraIor the NGR234-ΔngrImutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum-quenching genesdlhRandqsdR1and the type IV pilus gene cluster located on pNGR234bsuggested that factors other than AI molecules affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developingArabidopsis thalianaseedlings provide the first evidence that plant root exudates have strong effects on the heterogeneity of AI synthase and quorum-quenching genes in NGR234. Therefore, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression.


2019 ◽  
Author(s):  
Steven Dyer ◽  
Ryan T Weir ◽  
Deborah Cox ◽  
Xavier Cheseto ◽  
Baldwyn Torto ◽  
...  

Plant root exudates are compositionally diverse, plastic and adaptive. Ethylene signalling influences the attraction of plant parasitic nematodes (PPNs), presumably through the modulation of root exudate composition. Understanding this pathway could lead to new sources of crop parasite resistance. Here we have used Virus-Induced Gene Silencing (VIGS) to knockdown the expression of two ETHYLENE RESPONSE FACTOR (ERF) genes, ERF-E2 and ERF-E3 in tomato. Root exudates are significantly more attractive to the PPNs Meloidogyne incognita, and Globodera pallida following knockdown of ERF-E2, which has no impact on the attraction of Meloidogyne javanica. Knockdown of ERF-E3 has no impact on the attraction of Meloidogyne or Globodera spp. GC-MS analysis revealed substantial changes in root exudate composition relative to controls. However, these changes do not alter the attraction of rhizosphere microbes Bacillus subtilis or Agrobacterium tumefaciens. This study further supports the potential of engineering plant root exudate for parasite control, through the modulation of plant genes.


Sign in / Sign up

Export Citation Format

Share Document