scholarly journals Identification of a Putative Mexican Strain of Serratia entomophila Pathogenic against Root-Damaging Larvae of Scarabaeidae (Coleoptera)

2007 ◽  
Vol 74 (3) ◽  
pp. 802-810 ◽  
Author(s):  
M. Eugenia Nuñez-Valdez ◽  
Marco A. Calderón ◽  
Eduardo Aranda ◽  
Luciano Hernández ◽  
Rosa M. Ramírez-Gama ◽  
...  

ABSTRACT The larvae of scarab beetles, known as “white grubs” and belonging to the genera Phyllophaga and Anomala (Coleoptera: Scarabaeidae), are regarded as soil-dwelling pests in Mexico. During a survey conducted to find pathogenic bacteria with the potential to control scarab larvae, a native Serratia sp. (strain Mor4.1) was isolated from a dead third-instar Phyllophaga blanchardi larva collected from a cornfield in Tres Marías, Morelos, Mexico. Oral bioassays using healthy P. blanchardi larvae fed with the Mor4.1 isolate showed that this strain was able to cause an antifeeding effect and a significant loss of weight. Mortality was observed for P. blanchardi, P. trichodes, and P. obsoleta in a multidose experiment. The Mor4.1 isolate also caused 100% mortality 24 h after intracoelomic inoculation of the larvae of P. blanchardi, P. ravida, Anomala donovani and the lepidopteran insect Manduca sexta. Oral and injection bioassays were performed with concentrated culture broths of the Mor4.1 isolate to search for disease symptoms and mortality caused by extracellular proteins. The results have shown that Mor4.1 broths produce significant antifeeding effects and mortality. Mor4.1 broths treated with proteinase K lost the ability to cause disease symptoms and mortality, in both the oral and the injection bioassays, suggesting the involvement of toxic proteins in the disease. The Mor4.1 isolate was identified as a putative Serratia entomophila Mor4.1 strain based on numerical taxonomy and phylogenetic analyses done with the 16S rRNA gene sequence. The potential of S. entomophila Mor4.1 and its toxins to be used in an integrated pest management program is discussed.

Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1601-1609
Author(s):  
Peng Cao ◽  
Chenxu Li ◽  
Kefei Tan ◽  
Chuanzeng Liu ◽  
Xi Xu ◽  
...  

Rice is used as a staple food in different areas of world, especially in China. In recent years, rice seedlings have been affected seriously by symptoms resembling bacterial palea browning (BPB) in Heilongjiang Province. To isolate and identify the pathogenic bacteria responsible for the disease, 40 bacterial strains were isolated from diseased rice seedlings collected from the four major accumulative-temperature zones of rice fields cultivated in Heilongjiang Province, and these were identified as 13 species based on morphological characteristics and 16S ribosomal RNA (rRNA) gene sequences. Inoculation of all the isolates on healthy rice seedlings showed that the nine Enterobacter cloacae isolates were the pathogens causing typical symptoms of BPB, including yellowing to pale browning, stunting, withering, drying, and death. Moreover, the nine E. cloacae isolates could also cause symptoms of bacterial disease on the seedlings of soybean (Glycine max), maize (Zea mays L.), and tomato (Solanum lycopersicum). Phylogenetic analysis based on the 16S rRNA gene sequences and phenotypic and biochemical characteristics indicated that these nine pathogenic isolates were E. cloacae. In addition, analysis of the sequences of four housekeeping genes (rpoB, gyrB, infB, and atpD) from the selected strain SD4L also assigned the strain to E. cloacae. Therefore, E. cloacae is the pathogen causing disease of rice seedlings in Heilongjiang Province, which we propose to classify as a form of BPB. To the best of our knowledge, this is the first study to identify E. cloacae as a causal agent of BPB in rice.


2021 ◽  
Vol 9 (10) ◽  
pp. 2137
Author(s):  
Yang Zhou ◽  
Shuoxing Yi ◽  
Yi Zang ◽  
Qing Yao ◽  
Honghui Zhu

The application and promotion of biological control agents are limited because of poor efficacy and unstable performance in the field. Screening microorganisms with high antagonistic activity, effective adaptability, and high field-survival should be prospected. Myxobacteria are soil predatory bacteria with wide adaptability, which are considered as good antagonists. Here, we report a myxobacterium strain M34 isolated from subtropical forest soil in South China using the Escherichia coli baiting method. Based on the morphological observation, physiological test, biochemical characteristics, 16S rRNA gene sequence, and genomic data, strain M34 was identified as a novel genus and novel species, representing a new clade of Myxococcaceae, for which the name Citreicoccus inhibens gen. nov. sp. nov. is proposed (type strain M34T = GDMCC 1.2275T = KCTC 82453T). The typical features of M34, including fruiting body formation and extracellular fibrillar interconnection, indicated by microscopic observations, contributed to cell adaption in different environments. Furthermore, the strain showed antifungal activity against phytopathogenic fungi and predatory activity to both Gram-negative and Gram-positive phytopathogenic bacteria. The bioprotective mechanisms are attributed to the presence of pyrrolnitrin and derivative with antifungal activity and the extracellular proteins with lytic activity against pathogenic bacteria. Due to its multiple beneficial traits, strain M34 has the potential to be developed into a versatile biocontrol agent for the management of both fungal and bacterial phytopathogens.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Joel J. Brown ◽  
Sonia M. Rodríguez-Ruano ◽  
Anbu Poosakkannu ◽  
Giampiero Batani ◽  
Justin O. Schmidt ◽  
...  

Abstract Background Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas’ disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. Methods To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. Results Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. Conclusion Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors.


2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Seyedeh Asiyeh Mousavi ◽  
Nader Hasanzadeh

In order to determine the factors of decay and sourness of fig fruits, in the summer of 2016-17, 60 leaf, fruit and stem samples from different regions of Tehran, Varamin (Qal'e No), Mazandaran (Amol, Noor and Sari), Lorestan from Iran and a branch of fig fruit sample from Italy were collected. We obtained 30 isolates from the sample. The pathogenicity of 30 isolates were confirmed by artificially inoculation using fig fruits. They were also characterized based on key phenotypic traits. All 30 isolates showed hypersensitivity reaction to tobacco, pelargonium and did not show pathogenicity to potato tubers. 16S rRNA gene of the 10 representative isolates were sequenced. Ten isolates were identified as Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Pseudomonas fulva, Brevibacterium linens, Pseudomonas fragi, Bacillus licheniformis, Bacillus paralicheniformis and Bacillus cereus based on the determined sequences. None of the isolates caused fruit rot but typical disease symptoms were observed on fig leaves and fruits. This is the first report of the presence of pathogenic bacteria on fig trees in Iran.


2020 ◽  
Author(s):  
Joel J. Brown ◽  
Sonia M. Rodríguez-Ruano ◽  
Anbu Poosakkannu ◽  
Giampiero Batani ◽  
Justin O. Schmidt ◽  
...  

AbstractBackgroundKissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas’ disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species.MethodsTo obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimized 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi negative individuals across all six instars.ResultsTriatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia, but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes.ConclusionOur study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesize that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lampet Wongsaroj ◽  
Ratmanee Chanabun ◽  
Naruemon Tunsakul ◽  
Pinidphon Prombutara ◽  
Somsak Panha ◽  
...  

AbstractNortheastern Thailand relies on agriculture as a major economic activity, and has used high levels of agrochemicals due to low facility, and salty sandy soil. To support soil recovery and sustainable agriculture, local farmers have used organic fertilizers from farmed animal feces. However, knowledge about these animal fecal manures remains minimal restricting their optimal use. Specifically, while bacteria are important for soil and plant growth, an abundance and a diversity of bacterial composition in these animal fecal manures have not been reported to allow selection and adjustment for a more effective organic fertilizer. This study thereby utilized metagenomics combined with 16S rRNA gene quantitative PCR (qPCR) and sequencing to analyze quantitative microbiota profiles in association with nutrients (N, P, K), organic matters, and the other physiochemical properties, of the commonly used earthworm manure and other manures from livestock animals (including breed and feeding diet variations) in the region. Unlike the other manures, the earthworm manure demonstrated more favorable nutrient profiles and physiochemical properties for forming fertile soil. Despite low total microbial biomass, the microbiota were enriched with maximal OTUs and Chao richness, and no plant pathogenic bacteria were found based on the VFDB database. The microbial metabolic potentials supported functions to promote crop growth, such as C, N and P cyclings, xenobiotic degradation, and synthesis of bioactive compounds. Pearson’s correlation analyses indicated that the quantitative microbiota of the earthworm manure were clustered in the same direction as N, and conductivity, salinity, and water content were essential to control the microbiota of animal manures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhen Han ◽  
Peter S. Thuy-Boun ◽  
Wayne Pfeiffer ◽  
Vincent F. Vartabedian ◽  
Ali Torkamani ◽  
...  

AbstractN-Acetylneuraminic acid is the most abundant sialic acid (SA) in humans and is expressed as the terminal sugar on intestinal mucus glycans. Several pathogenic bacteria harvest and display host SA on their own surfaces to evade Siglec-mediated host immunity. While previous studies have identified bacterial enzymes associated with SA catabolism, no reported methods permit the selective labeling, tracking, and quantitation of SA-presenting microbes within complex multi-microbial systems. We combined metabolic labeling, click chemistry, 16S rRNA gene, and whole-genome sequencing to track and identify SA-presenting microbes from a cultured human fecal microbiome. We isolated a new strain of Escherichia coli that incorporates SA onto its own surface and encodes for the nanT, neuA, and neuS genes necessary for harvesting and presenting SA. Our method is applicable to the identification of SA-presenting bacteria from human, animal, and environmental microbiomes, as well as providing an entry point for the investigation of surface-expressed SA-associated structures.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
K. Böhme ◽  
P. Cremonesi ◽  
M. Severgnini ◽  
Tomás G. Villa ◽  
I. C. Fernández-No ◽  
...  

Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB) hybridization on membranes, coupled to the high specific ligation detection reaction (LDR). First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA). Four probes were selected and synthesized, being specific forAeromonasspp.,Pseudomonasspp.,Shewanellaspp., andMorganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


Sign in / Sign up

Export Citation Format

Share Document