scholarly journals Dissection and Modulation of the Four Distinct Activities of Nisin by Mutagenesis of Rings A and B and by C-Terminal Truncation

2007 ◽  
Vol 73 (18) ◽  
pp. 5809-5816 ◽  
Author(s):  
Rick Rink ◽  
Jenny Wierenga ◽  
Anneke Kuipers ◽  
Leon D. Kluskens ◽  
Arnold J. M. Driessen ◽  
...  

ABSTRACT Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 444
Author(s):  
Motoharu Hirano ◽  
Chihiro Saito ◽  
Hidetomo Yokoo ◽  
Chihiro Goto ◽  
Ryuji Kawano ◽  
...  

Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.



RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2905-2916
Author(s):  
Mounir A. A. Mohamed ◽  
Adnan A. Bekhit ◽  
Omyma A. Abd Allah ◽  
Asmaa M. Kadry ◽  
Tamer M. Ibrahim ◽  
...  

A new series of [1,2,4]-triazole bearing amino acid derivatives were synthesized under green chemistry conditions and evaluated for their antimicrobial activities.



MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 896-900 ◽  
Author(s):  
Takashi Misawa ◽  
Chihiro Goto ◽  
Norihito Shibata ◽  
Motoharu Hirano ◽  
Yutaka Kikuchi ◽  
...  

Amphipathic helical peptideStripeshowed high antimicrobial activity, low hemolytic activity, and low human cell cytotoxicity.



2021 ◽  
Vol 22 (7) ◽  
pp. 3299
Author(s):  
Damian Neubauer ◽  
Maciej Jaśkiewicz ◽  
Marta Bauer ◽  
Agata Olejniczak-Kęder ◽  
Emilia Sikorska ◽  
...  

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. L-cystine diamide and L-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the L-cystine diamide spacer seem to be less cytotoxic than their L-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.



2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna A. Datar ◽  
Sonali R. Jadhav

Pyrazole-3-one compounds were designed on the basis of docking studies of previously reported antidiabetic pyrazole compounds. The amino acid residues found during docking studies were used as guidelines for the modification of aromatic substitutions on pyrazole-3-one structure. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. The synthesized compounds were subjected to in vivo hypoglycemic activity using alloxan induced diabetic rats and metformin as a standard. Compound 4 having sulphonamide derivative was found to be the most potent compound among the series.



Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 74 ◽  
Author(s):  
Eugene Rogozhin ◽  
Dmitry Ryazantsev ◽  
Alexey Smirnov ◽  
Sergey Zavriev

Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.



2021 ◽  
Vol 22 (20) ◽  
pp. 11264
Author(s):  
Špela Gruden ◽  
Nataša Poklar Ulrih

Lactoferrins are an iron-binding glycoprotein that have important protective roles in the mammalian body through their numerous functions, which include antimicrobial, antitumor, anti-inflammatory, immunomodulatory, and antioxidant activities. Among these, their antimicrobial activity has been the most studied, although the mechanism behind antimicrobial activities remains to be elucidated. Thirty years ago, the first lactoferrin-derived peptide was isolated and showed higher antimicrobial activity than the native lactoferrin lactoferricin. Since then, numerous studies have investigated the antimicrobial potencies of lactoferrins, lactoferricins, and other lactoferrin-derived peptides to better understand their antimicrobial activities at the molecular level. This review defines the current antibacterial, antiviral, antifungal, and antiparasitic activities of lactoferrins, lactoferricins, and lactoferrin-derived peptides. The primary focus is on their different mechanisms of activity against bacteria, viruses, fungi, and parasites. The role of their structure, amino-acid composition, conformation, charge, hydrophobicity, and other factors that affect their mechanisms of antimicrobial activity are also reviewed.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bettina Weigelin ◽  
Annemieke Th. den Boer ◽  
Esther Wagena ◽  
Kelly Broen ◽  
Harry Dolstra ◽  
...  

AbstractLethal hit delivery by cytotoxic T lymphocytes (CTL) towards B lymphoma cells occurs as a binary, “yes/no” process. In non-hematologic solid tumors, however, CTL often fail to kill target cells during 1:1 conjugation. Here we describe a mechanism of “additive cytotoxicity” by which time-dependent integration of sublethal damage events, delivered by multiple CTL transiting between individual tumor cells, mediates effective elimination. Reversible sublethal damage includes perforin-dependent membrane pore formation, nuclear envelope rupture and DNA damage. Statistical modeling reveals that 3 serial hits delivered with decay intervals below 50 min discriminate between tumor cell death or survival after recovery. In live melanoma lesions in vivo, sublethal multi-hit delivery is most effective in interstitial tissue where high CTL densities and swarming support frequent serial CTL-tumor cell encounters. This identifies CTL-mediated cytotoxicity by multi-hit delivery as an incremental and tunable process, whereby accelerating damage magnitude and frequency may improve immune efficacy.





Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.



Sign in / Sign up

Export Citation Format

Share Document