scholarly journals Fluid Flow Induces Biofilm Formation in Staphylococcus epidermidis Polysaccharide Intracellular Adhesin-Positive Clinical Isolates

2012 ◽  
Vol 78 (16) ◽  
pp. 5890-5896 ◽  
Author(s):  
Westbrook M. Weaver ◽  
Vladana Milisavljevic ◽  
Jeff F. Miller ◽  
Dino Di Carlo

ABSTRACTStaphylococcus epidermidisis a common cause of catheter-related bloodstream infections, resulting in significant morbidity and mortality and increased hospital costs. The ability to form biofilms plays a crucial role in pathogenesis; however, not all clinical isolates form biofilms under normalin vitroconditions. Strains containing theicaoperon can display significant phenotypic variation with respect to polysaccharide intracellular adhesin (PIA)-based biofilm formation, including the induction of biofilms upon environmental stress. Using a parallel microfluidic approach to investigate flow as an environmental signal forS. epidermidisbiofilm formation, we demonstrate that fluid shear alone induces PIA-positive biofilms of certain clinical isolates and influences biofilm structure. These findings suggest an important role of the catheter microenvironment, particularly fluid flow, in the establishment ofS. epidermidisinfections by PIA-dependent biofilm formation.

2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Hubertine M. E. Willems ◽  
Jeremy S. Stultz ◽  
Molly E. Coltrane ◽  
Jabez P. Fortwendel ◽  
Brian M. Peters

ABSTRACT Receipt of parenteral nutrition (PN) remains an independent risk factor for developing catheter-related bloodstream infections (CR-BSI) caused by fungi, including by the polymorphic fungus Candida albicans, which is notoriously adept at forming drug-resistant biofilm structures. Among a variety of macronutrients, PN solutions contain lipid emulsions to supply daily essential fats and are often delivered via central venous catheters (CVCs). Therefore, using an in vitro biofilm model system, we sought to determine whether various clinical lipid emulsions differentially impacted biofilm growth in C. albicans. We observed that the lipid emulsions Intralipid and Omegaven both stimulated C. albicans biofilm formation during growth in minimal medium or a macronutrient PN solution. Conversely, Smoflipid inhibited C. albicans biofilm formation by approximately 50%. Follow-up studies revealed that while Smoflipid did not impair C. albicans growth, it did significantly inhibit hypha formation and hyphal elongation. Moreover, growth inhibition could be recapitulated in Intralipid when supplemented with capric acid—a fatty acid present in Smoflipid but absent in Intralipid. Capric acid was also found to dose dependently inhibit C. albicans biofilm formation in PN solutions. This is the first study to directly compare different clinical lipid emulsions for their capacity to affect C. albicans biofilm growth. Results derived from this study necessitate further research regarding different lipid emulsions and rates of fungus-associated CR-BSIs.


2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Kenneth L. Brockman ◽  
Patrick N. Azzari ◽  
M. Taylor Branstool ◽  
John M. Atack ◽  
Benjamin L. Schulz ◽  
...  

ABSTRACT Biofilms play a critical role in the colonization, persistence, and pathogenesis of many human pathogens. Multiple mucosa-associated pathogens have evolved a mechanism of rapid adaptation, termed the phasevarion, which facilitates a coordinated regulation of numerous genes throughout the bacterial genome. This epigenetic regulation occurs via phase variation of a DNA methyltransferase, Mod. The phasevarion of nontypeable Haemophilus influenzae (NTHI) significantly affects the severity of experimental otitis media and regulates several disease-related processes. However, the role of the NTHI phasevarion in biofilm formation is unclear. The present study shows that the phasevarions of multiple NTHI clinical isolates regulate in vitro biofilm formation under disease-specific microenvironmental conditions. The impact of phasevarion regulation was greatest under alkaline conditions that mimic those known to occur in the middle ear during disease. Under alkaline conditions, NTHI strains that express the ModA2 methyltransferase formed biofilms with significantly greater biomass and less distinct architecture than those formed by a ModA2-deficient population. The biofilms formed by NTHI strains that express ModA2 also contained less extracellular DNA (eDNA) and significantly less extracellular HU, a DNABII DNA-binding protein critical for biofilm structural stability. Stable biofilm structure is critical for bacterial pathogenesis and persistence in multiple experimental models of disease. These results identify a role for the phasevarion in regulation of biofilm formation, a process integral to the chronic nature of many infections. Understanding the role of the phasevarion in biofilm formation is critical to the development of prevention and treatment strategies for these chronic diseases. IMPORTANCE Upper respiratory tract infections are the number one reason for a child to visit the emergency department, and otitis media (middle ear infection) ranks third overall. Biofilms contribute significantly to the chronic nature of bacterial respiratory tract infections, including otitis media, and make these diseases particularly difficult to treat. Several mucosa-associated human pathogens utilize a mechanism of rapid adaptation termed the phasevarion, or phase variable regulon, to resist environmental and host immune pressures. In this study, we assessed the role of the phasevarion in regulation of biofilm formation by nontypeable Haemophilus influenzae (NTHI), which causes numerous respiratory tract diseases. We found that the NTHI phasevarion regulates biofilm structure and critical biofilm matrix components under disease-specific conditions. The findings of this work could be significant in the design of improved strategies against NTHI infections, as well as diseases due to other pathogens that utilize a phasevarion.


2015 ◽  
Vol 83 (6) ◽  
pp. 2430-2442 ◽  
Author(s):  
Jorge E. Vidal ◽  
Joshua R. Shak ◽  
Adrian Canizalez-Roman

Clostridium perfringensstrains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by theC. perfringensAgr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. AlthoughC. perfringensstrains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrBmutant strains were not able to produce biofilms, a ΔluxSmutant produced wild-type levels. The transcript levels of CpAL-regulatedcpaandpfoAgenes, but notcpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpaand ΔpfoAmutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpbmade wild-type levels. Biofilm formation was restored in complemented Δcpa/cpaand ΔpfoA/pfoAstrains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation inC. perfringensby increasing levels of certain toxins required to build biofilms.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Joseph S. Rom ◽  
Aura M. Ramirez ◽  
Karen E. Beenken ◽  
Gyan S. Sahukhal ◽  
Mohamed O. Elasri ◽  
...  

ABSTRACT The staphylococcal accessory regulator (sarA) plays an important role in Staphylococcus aureus infections, including osteomyelitis, and the msaABCR operon has been implicated as an important factor in modulating expression of sarA. Thus, we investigated the contribution of msaABCR to sarA-associated phenotypes in the S. aureus clinical isolates LAC and UAMS-1. Mutation of msaABCR resulted in reduced production of SarA and a reduced capacity to form a biofilm in both strains. Biofilm formation was enhanced in a LAC msa mutant by restoring the production of SarA, but this was not true in a UAMS-1 msa mutant. Similarly, extracellular protease production was increased in a LAC msa mutant but not a UAMS-1 msa mutant. This difference was reflected in the accumulation and distribution of secreted virulence factors and in the impact of extracellular proteases on biofilm formation in a LAC msa mutant. Most importantly, it was reflected in the relative impact of mutating msa as assessed in a murine osteomyelitis model, which had a significant impact in LAC but not in UAMS-1. In contrast, mutation of sarA had a greater impact on all of these in vitro and in vivo phenotypes than mutation of msaABCR, and it did so in both LAC and UAMS-1. These results suggest that, at least in osteomyelitis, it would be therapeutically preferable to target sarA rather than msaABCR to achieve the desired clinical result, particularly in the context of divergent clinical isolates of S. aureus.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Yujie Xiao ◽  
Haozhe Chen ◽  
Liang Nie ◽  
Meina He ◽  
Qi Peng ◽  
...  

ABSTRACT The bacterial second messenger cyclic diguanylate (c-di-GMP) modulates plankton-to-biofilm lifestyle transition of Pseudomonas species through its transcriptional regulatory effector FleQ. FleQ regulates transcription of biofilm- and flagellum-related genes in response to c-di-GMP. Through transcriptomic analysis and FleQ-DNA binding assay, this study identified five new target genes of c-di-GMP/FleQ in P. putida, including PP_0681, PP_0788, PP_4519 (lapE), PP_5222 (cyaA), and PP_5586. Except lapE encoding an outer membrane pore protein and cyaA encoding an adenylate cyclase, the functions of the other three genes encoding hypothetical proteins remain unknown. FleQ and c-di-GMP coordinately inhibit transcription of PP_0788 and cyaA and promote transcription of PP_0681, lapE, and PP_5586. Both in vitro and in vivo assays show that FleQ binds directly to promoters of the five genes. Further analyses confirm that LapE plays a central role of in the secretion of adhesin LapA and that c-di-GMP/FleQ increases lapE transcription, thereby promoting adhesin secretion and biofilm formation. The adenylate cyclase CyaA is responsible for synthesis of another second messenger, cyclic AMP (cAMP). FleQ and c-di-GMP coordinate to decrease the content of cAMP, suggesting that c-di-GMP and FleQ coregulate cAMP by modulating cyaA expression. Overall, this study adds five new members to the c-di-GMP/FleQ-regulated gene family and reveals the role of c-di-GMP/FleQ in LapA secretion and cAMP synthesis regulation in P. putida. IMPORTANCE c-di-GMP/FleQ promotes the plankton-to-biofilm lifestyle transition at the transcriptional level via FleQ in Pseudomonas species. Identification of new target genes directly regulated by c-di-GMP/FleQ helps to broaden the knowledge of c-di-GMP/FleQ-mediated transcriptional regulation. Regulation of lapE by c-di-GMP/FleQ guarantees highly efficient LapA secretion and biofilm formation. The mechanism of negative correlation between c-di-GMP and cAMP in both P. putida and P. aeruginosa remains unknown. Our result concerning transcriptional inhibition of cyaA by c-di-GMP/FleQ reveals the mechanism underlying the decrease of cAMP content by c-di-GMP in P. putida.


2010 ◽  
Vol 54 (6) ◽  
pp. 2707-2711 ◽  
Author(s):  
Qian Wang ◽  
Feng-Jun Sun ◽  
Yao Liu ◽  
Li-Rong Xiong ◽  
Lin-Li Xie ◽  
...  

ABSTRACT Biofilm formation in Staphylococcus epidermidis is mediated by icaADBC-dependent and -independent pathways. Subinhibitory concentrations of erythromycin, azithromycin, and clarithromycin enhanced, in a dose-dependent manner, the level of biofilm formation by 20% (21/105 isolates) by macrolide-resistant ica-positive and -negative isolates tested in vitro. The presence of ica, however, apparently produced an enhanced effect on biofilm formation. The levels of expression of the biofilm-related genes icaA, atlE, fruA, pyrR, sarA, and sigB were increased in response to erythromycin. The results likely underscore the potential clinical relevance of macrolide-induced biofilm growth.


2012 ◽  
Vol 57 (1) ◽  
pp. 382-389 ◽  
Author(s):  
Jorge Meneses Nunes ◽  
Fernando César Bizerra ◽  
Renata Carmona e Ferreira ◽  
Arnaldo Lopes Colombo

ABSTRACTRhodotorulaspecies are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmentalRhodotorulaspecies isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44R. mucilaginosaisolates, 2R. glutinisisolates, 2R. minutaisolates, 2R. dairenensisisolates, and 1Rhodosporidium fluvialeisolate. The environmental isolates included 7R. mucilaginosaisolates and 1R. slooffiaeisolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay,R. mucilaginosaandR. minutaexhibited greater biofilm formation ability compared to the otherRhodotorulaspecies; the clinical isolates ofR. mucilaginosashowed greater biofilm formation compared to the environmental isolates (P= 0.04). Amphotericin B showed goodin vitroactivity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC50/MIC90, 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identifyRhodotorulaspecies isolates and non-R. mucilaginosaspecies in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment ofRhodotorulainfections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among differentRhodotorulaspecies.


Sign in / Sign up

Export Citation Format

Share Document