scholarly journals Longitudinal Study of Distributions of Similar Antimicrobial-Resistant Salmonella Serovars in Pigs and Their Environment in Two Distinct Swine Production Systems

2013 ◽  
Vol 79 (17) ◽  
pp. 5167-5178 ◽  
Author(s):  
Shivaramu Keelara ◽  
H. Morgan Scott ◽  
William M. Morrow ◽  
Wondwossen A. Gebreyes ◽  
Maria Correa ◽  
...  

ABSTRACTThe aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR)Salmonellaisolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090Salmonellaisolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%;n= 66) and their environment (11.7%;n= 156) than in ABF pigs (0.2%;n= 2) and their environment (0.6%;n= 5) (P< 0.001).Salmonellawas isolated from all stages at slaughter, including the postchill step, in the two production systems.Salmonellaprevalence was significantly higher in MLN extracted from conventional carcasses than those extracted from ABF carcasses (P< 0.001). We identified a total of 24 different serotypes, withSalmonella entericaserovar Typhimurium,Salmonella entericaserovar Anatum,Salmonella entericaserovar Infantis, andSalmonella entericaserovar Derby being predominant. The highest frequencies of antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥3 antimicrobials; MDR) was detected in 27% (n= 254) of theSalmonellaisolates from the conventional system. Our study reports a low prevalence ofSalmonellain both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics ofSalmonellaprevalence in pigs and carcasses were reciprocated in the farm and slaughter environment, clearly indicating an exchange of this pathogen between the pigs and their surroundings. Furthermore, the phenotypic and genotypic fingerprint profile results underscore the potential role played by environmental factors in dissemination of ARSalmonellato pigs.

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Michael Frahm ◽  
Sebastian Felgner ◽  
Dino Kocijancic ◽  
Manfred Rohde ◽  
Michael Hensel ◽  
...  

ABSTRACTIncreasing numbers of cancer cases generate a great urge for new treatment options. Applying bacteria likeSalmonella entericaserovar Typhimurium for cancer therapy represents an intensively explored option. These bacteria have been shown not only to colonize solid tumors but also to exhibit an intrinsic antitumor effect. In addition, they could serve as tumor-targeting vectors for therapeutic molecules. However, the pathogenicS. Typhimurium strains used for tumor therapy need to be attenuated for safe application. Here, lipopolysaccharide (LPS) deletion mutants (ΔrfaL, ΔrfaG, ΔrfaH, ΔrfaD, ΔrfaP, and ΔmsbBmutants) ofSalmonellawere investigated for efficiency in tumor therapy. Of such variants, the ΔrfaDand ΔrfaGdeep rough mutants exhibited the best tumor specificity and lowest pathogenicity. However, the intrinsic antitumor effect was found to be weak. To overcome this limitation, conditional attenuation was tested by complementing the mutants with an inducible arabinose promoter. The chromosomal integration of the respective LPS biosynthesis genes into thearaBADlocus exhibited the best balance of attenuation and therapeutic benefit. Thus, the present study establishes a basis for the development of an applicably cancer therapeutic bacterium.IMPORTANCECancer has become the second most frequent cause of death in industrialized countries. This and the drawbacks of routine therapies generate an urgent need for novel treatment options. Applying appropriately modifiedS. Typhimurium for therapy represents the major challenge of bacterium-mediated tumor therapy. In the present study, we demonstrated thatSalmonellabacteria conditionally modified in their LPS phenotype exhibit a safe tumor-targeting phenotype. Moreover, they could represent a suitable vehicle to shuttle therapeutic compounds directly into cancerous tissue without harming the host.


2017 ◽  
Vol 5 (46) ◽  
Author(s):  
Najwa Syahirah Roslan ◽  
Shagufta Jabeen ◽  
Nurulfiza Mat Isa ◽  
Abdul Rahman Omar ◽  
Mohd Hair Bejo ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S. Typhimurium strain UPM 260, isolated from a broiler chicken.


2012 ◽  
Vol 80 (7) ◽  
pp. 2454-2463 ◽  
Author(s):  
Stephen J. Forbes ◽  
Daniel Martinelli ◽  
Chyongere Hsieh ◽  
Jeffrey G. Ault ◽  
Michael Marko ◽  
...  

ABSTRACTInvasion of intestinal epithelial cells bySalmonella entericaserovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as theSalmonellapathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry ofS. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface ofS. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of theS. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Hugh M. B. Harris ◽  
Elisa C. Ale ◽  
Jorge A. Reinheimer ◽  
Ana G. Binetti ◽  
Paul W. O’Toole

Lactobacillus fermentum Lf2, an Argentine cheese isolate, can produce high concentrations of exopolysaccharides (EPS). These EPS were shown to improve the texture and rheology of yogurt, as well as to play a protective role in mice exposed to Salmonella enterica serovar Typhimurium.


2012 ◽  
Vol 56 (11) ◽  
pp. 6037-6040 ◽  
Author(s):  
Vito Ricci ◽  
Stephen J. W. Busby ◽  
Laura J. V. Piddock

ABSTRACTRamA is a transcription factor involved in regulating multidrug resistance inSalmonella entericaserovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses theramApromoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to theramApromoter sequence more efficiently, thus exhibiting aramAinactivated phenotype.


2016 ◽  
Vol 198 (13) ◽  
pp. 1798-1811 ◽  
Author(s):  
Sandhya Amol Marathe ◽  
Arjun Balakrishnan ◽  
Vidya Devi Negi ◽  
Deepika Sakorey ◽  
Nagasuma Chandra ◽  
...  

ABSTRACTOne of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility ofSalmonella, a foodborne pathogen. It reduced the motility ofSalmonella entericaserovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175.IMPORTANCEThis work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important appendages ofSalmonella. Curcumin is an important component of turmeric, which is a major spice used in Asian cooking. The loss of flagella can, in turn, change the pathogenesis of bacteria, making them more robust and fit in the host.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Edna M. Ondari ◽  
Jennifer N. Heath ◽  
Elizabeth J. Klemm ◽  
Gemma Langridge ◽  
Lars Barquist ◽  
...  

ABSTRACT The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S. Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S. Typhimurium to immune serum identified a repertoire of S. Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S. Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S. Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S. Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.


2018 ◽  
Vol 6 (16) ◽  
pp. e00232-18 ◽  
Author(s):  
Amanda Aparecida Seribelli ◽  
Miliane Rodrigues Frazão ◽  
Júlia Cunha Gonzales ◽  
Guojie Cao ◽  
Maria Sanchez Leon ◽  
...  

ABSTRACT Salmonellosis is a disease with a high incidence worldwide, and Salmonella enterica subsp. enterica serovar Typhimurium is one of the most clinically important serovars. We report here the draft genome sequences of 20 S. Typhimurium strains isolated from swine in Santa Catarina, Brazil. These draft genomes will improve our understanding of S. Typhimurium in Brazil.


Sign in / Sign up

Export Citation Format

Share Document