scholarly journals Regulation of Arabinose and Xylose Metabolism in Escherichia coli

2009 ◽  
Vol 76 (5) ◽  
pp. 1524-1532 ◽  
Author(s):  
Tasha A. Desai ◽  
Christopher V. Rao

ABSTRACT Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.

2015 ◽  
Vol 198 (3) ◽  
pp. 386-393 ◽  
Author(s):  
Santosh Koirala ◽  
Xiaoyi Wang ◽  
Christopher V. Rao

ABSTRACTGlucose is known to inhibit the transport and metabolism of many sugars inEscherichia coli. This mechanism leads to its preferential consumption. Far less is known about the preferential utilization of nonglucose sugars inE. coli. Two exceptions arel-arabinose andd-xylose. Previous studies have shown thatl-arabinose inhibitsd-xylose metabolism inEscherichia coli. This repression results froml-arabinose-bound AraC binding to the promoter of thed-xylose metabolic genes and inhibiting their expression. This mechanism, however, has not been explored in single cells. Both thel-arabinose andd-xylose utilization systems are known to exhibit a bimodal induction response to their cognate sugar, where mixed populations of cells either expressing the metabolic genes or not are observed at intermediate sugar concentrations. This suggests thatl-arabinose can only inhibitd-xylose metabolism inl-arabinose-induced cells. To understand how cross talk between these systems affects their response, we investigatedE. coliduring growth on mixtures ofl-arabinose andd-xylose at single-cell resolution. Our results showed that mixed, multimodal populations ofl-arabinose- andd-xylose-induced cells occurred at intermediate sugar concentrations. We also found thatd-xylose inhibited the expression of thel-arabinose metabolic genes and that this repression was due to XylR. These results demonstrate that a strict hierarchy does not exist betweenl-arabinose andd-xylose as previously thought. The results may also aid in the design ofE. colistrains capable of simultaneous sugar consumption.IMPORTANCEGlucose,d-xylose, andl-arabinose are the most abundant sugars in plant biomass. Developing efficient fermentation processes that convert these sugars into chemicals and fuels will require strains capable of coutilizing these sugars. Glucose has long been known to repress the expression of thel-arabinose andd-xylose metabolic genes inEscherichia coli. Recent studies found thatl-arabinose also represses the expression of thed-xylose metabolic genes. In the present study, we found thatd-xylose also represses the expression of thel-arabinose metabolic genes, leading to mixed populations of cells capable of utilizingl-arabinose andd-xylose. These results further our understanding of mixed-sugar utilization and may aid in strain design.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hyeon Jeong Seong ◽  
Yu-Sin Jang

AbstractEscherichia coli has been used as a host to construct the cell factory for biobased production of chemicals from renewable feedstocks. Because galactose is found in marine biomass as a major component, the strategy for galactose utilization in E. coli has been gained more attention. Although galactose and glucose co-fermentation has been reported using the engineered E. coli strain, few reports have covered fermentation supplemented with galactose as a sole carbon source in the mutant lacking the repressor-specific carbon catabolite repression (CCR). Here, we report the effects of the deregulation of the repressor-specific CCR (galR− and galS−) in fermentation supplemented with galactose as a sole carbon source, using the engineered E. coli strains. In the fermentation using the galR− and galS− double mutant (GR2 strain), an increase of rates in sugar consumption and cell growth was observed compared to the parent strain. In the glucose fermentation, wild-type W3110 and its mutant GR2 and GR2PZ (galR−, galS−, pfkA−, and zwf−) consumed sugar at a higher rate than those values obtained from galactose fermentation. However, the GR2P strain (galR−, galS−, and pfkA−) showed no difference between fermentations using glucose and galactose as a sole carbon source. This study provides essential information for galactose fermentation using the CCR-deregulated E. coli strains.


2016 ◽  
Vol 82 (22) ◽  
pp. 6715-6727 ◽  
Author(s):  
Jeffrey Meisner ◽  
Joanna B. Goldberg

ABSTRACTThearaC-ParaBADinducible promoter system is tightly controlled and allows gene expression to be modulated over a wide range inEscherichia coli, which has led to its widespread use in other bacteria. Although anecdotal evidence suggests thataraC-ParaBADis leaky inPseudomonas aeruginosa, neither a thorough analysis of this inducible promoter system inP. aeruginosanor a concerted effort to identify alternatives with improved functionality has been reported. Here, we evaluated the functionality of thearaC-ParaBADsystem inP. aeruginosa. Using transcriptional fusions to alacZreporter gene, we determined that the noninduced expression fromaraC-ParaBADis high and cannot be reduced by carbon catabolite repression as it can inE. coli. Modulating translational initiation by altering ribosome-binding site strength reduced the noninduced activity but also decreased the maximal induced activity and narrowed the induction range. Integrating the inducible promoter system into the posttranscriptional regulatory network that controls catabolite repression inP. aeruginosasignificantly decreased the noninduced activity and increased the induction range. In addition to these improvements in the functionality of thearaC-ParaBADsystem, we found that thelacIq-PtacandrhaSR-PrhaBADinducible promoter systems had significantly lower noninduced expression and were inducible over a broader range thanaraC-ParaBAD. We demonstrated that noninduced expression from thearaC-ParaBADsystem supported the function of genes involved in antibiotic resistance and tryptophan biosynthesis inP. aeruginosa, problems that were avoided withrhaSR-PrhaBAD. rhaSR-PrhaBADis tightly controlled, allows gene expression over a wide range, and represents a significant improvement overaraC-ParaBADinP. aeruginosa.IMPORTANCEWe report the shortcomings of the commonly usedEscherichia coli araC-ParaBADinducible promoter system inPseudomonas aeruginosa, successfully reengineered it to improve its functionality, and show that theE. colirhaSR-PrhaBADsystem is tightly controlled and allows inducible gene expression over a wide range inP. aeruginosa.


1999 ◽  
Vol 181 (5) ◽  
pp. 1610-1616 ◽  
Author(s):  
Ivo E. Staijen ◽  
Rosanna Marcionelli ◽  
Bernard Witholt

ABSTRACT The alk genes are located on the OCT plasmid ofPseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans andEscherichia coli alk + recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxylase activity in pseudomonads is subject to carbon catabolite repression. Specifically, synthesis of the monooxygenase component AlkB is repressed at the transcriptional level. The alk genes have been cloned into plasmid pGEc47, which has a copy number of about 5 to 10 per cell in both E. coli and pseudomonads.Pseudomonas putida GPo12 is a P. oleovoransderivative cured of the OCT plasmid. Upon introduction of pGEc47 in this strain, carbon catabolite repression of alkane hydroxylase activity was reduced significantly. In cultures of recombinant E. coli HB101 and W3110 carrying pGEc47, induction of AlkB and transcription of the alkB gene were no longer subject to carbon catabolite repression. This suggests that carbon catabolite repression of alkane degradation is regulated differently inPseudomonas and in E. coli strains. These results also indicate that P alkBFGHJKL , the P alk promoter, might be useful in attaining high expression levels of heterologous genes in E. coligrown on inexpensive carbon sources which normally trigger carbon catabolite repression of native expression systems in this host.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


2019 ◽  
Vol 295 (4) ◽  
pp. 981-993 ◽  
Author(s):  
Laura Tempelhagen ◽  
Anita Ayer ◽  
Doreen E. Culham ◽  
Roland Stocker ◽  
Janet M. Wood

Ubiquinone 8 (coenzyme Q8 or Q8) mediates electron transfer within the aerobic respiratory chain, mitigates oxidative stress, and contributes to gene expression in Escherichia coli. In addition, Q8 was proposed to confer bacterial osmotolerance by accumulating during growth at high osmotic pressure and altering membrane stability. The osmolyte trehalose and membrane lipid cardiolipin accumulate in E. coli cells cultivated at high osmotic pressure. Here, Q8 deficiency impaired E. coli growth at low osmotic pressure and rendered growth osmotically sensitive. The Q8 deficiency impeded cellular O2 uptake and also inhibited the activities of two proton symporters, the osmosensing transporter ProP and the lactose transporter LacY. Q8 supplementation decreased membrane fluidity in liposomes, but did not affect ProP activity in proteoliposomes, which is respiration-independent. Liposomes and proteoliposomes prepared with E. coli lipids were used for these experiments. Similar oxygen uptake rates were observed for bacteria cultivated at low and high osmotic pressures. In contrast, respiration was dramatically inhibited when bacteria grown at the same low osmotic pressure were shifted to high osmotic pressure. Thus, respiration was restored during prolonged growth of E. coli at high osmotic pressure. Of note, bacteria cultivated at low and high osmotic pressures had similar Q8 concentrations. The protection of respiration was neither diminished by cardiolipin deficiency nor conferred by trehalose overproduction during growth at low osmotic pressure, but rather might be achieved by Q8-independent respiratory chain remodeling. We conclude that osmotolerance is conferred through Q8-independent protection of respiration, not by altering physical properties of the membrane.


2019 ◽  
Vol 201 (10) ◽  
Author(s):  
Karan Gautam Kaval ◽  
Margo Gebbie ◽  
Jonathan R. Goodson ◽  
Melissa R. Cruz ◽  
Wade C. Winkler ◽  
...  

ABSTRACT Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR). IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella. Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Leanid Laganenka ◽  
María Esteban López ◽  
Remy Colin ◽  
Victor Sourjik

ABSTRACT Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli, mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection. IMPORTANCE Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic E. coli strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic E. coli to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.


Sign in / Sign up

Export Citation Format

Share Document