scholarly journals Use of mCherry Red Fluorescent Protein for Studies of Protein Localization and Gene Expression in Clostridium difficile

2014 ◽  
Vol 81 (5) ◽  
pp. 1652-1660 ◽  
Author(s):  
Eric M. Ransom ◽  
Craig D. Ellermeier ◽  
David S. Weiss

ABSTRACTFluorescent proteins are powerful reporters in biology, but most require O2for chromophore maturation, making them inherently difficult to use in anaerobic bacteria.Clostridium difficile, a strict anaerobe with a genomic GC content of only 29%, is the leading cause of hospital-acquired diarrhea in developed countries, and new methods for studying this pathogen are sorely needed. We recently demonstrated that a cyan fluorescent protein called CFPoptthat has been codon optimized for production in low-GC bacteria can be used to study protein localization inC. difficileprovided the cells are fixed prior to exposure to air. We describe here a codon-optimized variant of mCherry (mCherryOpt) that exhibits faster acquisition of fluorescence and a better signal-to-noise ratio than CFPopt. We utilizedmCherryOptto construct plasmids for studying protein localization (pRAN473) and gene expression (pDSW1728) inC. difficile. Plasmid pRAN473 is anmCherryOptfusion vector with a tetracycline-inducible promoter. To document its biological utility, we demonstrated septal localization of two cell division proteins, MldA and ZapA. Plasmid pDSW1728 is designed for cloning a promoter of interest upstream ofmCherryOpt. As proof of principle, we studied the expression of thepdaVoperon, which is required for lysozyme resistance. In confirmation and extension of previous reports, we found that expression of thepdaVoperon requires the alternative sigma factor σvand that induction by lysozyme is dose dependent and uniform across the population of lysozyme-treated cells.

2015 ◽  
Vol 81 (20) ◽  
pp. 7244-7252 ◽  
Author(s):  
Katrin Beilharz ◽  
Renske van Raaphorst ◽  
Morten Kjos ◽  
Jan-Willem Veening

ABSTRACTDuring the last decades, a wide range of fluorescent proteins (FPs) have been developed and improved. This has had a great impact on the possibilities in biological imaging and the investigation of cellular processes at the single-cell level. Recently, we have benchmarked a set of green fluorescent proteins (GFPs) and generated a codon-optimized superfolder GFP for efficient use in the important human pathogenStreptococcus pneumoniaeand other low-GC Gram-positive bacteria. In the present work, we constructed and compared four red fluorescent proteins (RFPs) inS. pneumoniae. Two orange-red variants, mOrange2 and TagRFP, and two far-red FPs, mKate2 and mCherry, were codon optimized and examined by fluorescence microscopy and plate reader assays. Notably, protein fusions of the RFPs to FtsZ were constructed by direct transformation of linear Gibson assembly (isothermal assembly) products, a method that speeds up the strain construction process significantly. Our data show that mCherry is the fastest-maturing RFP inS. pneumoniaeand is best suited for studying gene expression, while mKate2 and TagRFP are more stable and are the preferred choices for protein localization studies. The RFPs described here will be useful for cell biology studies that require multicolor labeling inS. pneumoniaeand related organisms.


2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Ute Müh ◽  
Anthony G. Pannullo ◽  
David S. Weiss ◽  
Craig D. Ellermeier

ABSTRACT Here we introduce plasmids for xylose-regulated expression and repression of genes in Clostridioides difficile. The xylose-inducible expression vector allows for ∼100-fold induction of an mCherryOpt reporter gene. Induction is titratable and uniform from cell to cell. The gene repression plasmid is a CRISPR interference (CRISPRi) system based on a nuclease-defective, codon-optimized allele of the Streptococcus pyogenes Cas9 protein (dCas9) that is targeted to a gene of interest by a constitutively expressed single guide RNA (sgRNA). Expression of dCas9 is induced by xylose, allowing investigators to control the timing and extent of gene silencing, as demonstrated here by dose-dependent repression of a chromosomal gene for a red fluorescent protein (maximum repression, ∼100-fold). To validate the utility of CRISPRi for deciphering gene function in C. difficile, we knocked down the expression of three genes involved in the biogenesis of the cell envelope: the cell division gene ftsZ, the S-layer protein gene slpA, and the peptidoglycan synthase gene pbp-0712. CRISPRi confirmed known or expected phenotypes associated with the loss of FtsZ and SlpA and revealed that the previously uncharacterized peptidoglycan synthase PBP-0712 is needed for proper elongation, cell division, and protection against lysis. IMPORTANCE Clostridioides difficile has become the leading cause of hospital-acquired diarrhea in developed countries. A better understanding of the basic biology of this devastating pathogen might lead to novel approaches for preventing or treating C. difficile infections. Here we introduce new plasmid vectors that allow for titratable induction (Pxyl) or knockdown (CRISPRi) of gene expression. The CRISPRi plasmid allows for easy depletion of target proteins in C. difficile. Besides bypassing the lengthy process of mutant construction, CRISPRi can be used to study the function of essential genes, which are particularly important targets for antibiotic development.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Robert W. McKee ◽  
Carissa K. Harvest ◽  
Rita Tamayo

ABSTRACTThe intracellular signaling molecule cyclic diguanylate (c-di-GMP) regulates many processes in bacteria, with a central role in controlling the switch between motile and nonmotile lifestyles. Recent work has shown that inClostridium difficile(also calledClostridioides difficile), c-di-GMP regulates swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we determined the transcriptional regulon of c-di-GMP inC. difficile,employing overexpression of a diguanylate cyclase gene to artificially manipulate intracellular c-di-GMP. Consistent with prior work, c-di-GMP regulated the expression of genes involved in swimming and surface motility. c-di-GMP also affected the expression of multiple genes encoding cell envelope proteins, several of which affected biofilm formationin vitro. A substantial proportion of the c-di-GMP regulon appears to be controlled either directly or indirectly via riboswitches. We confirmed the functionality of 11 c-di-GMP riboswitches, demonstrating their effects on downstream gene expression independent of the upstream promoters. The class I riboswitches uniformly functioned as “off” switches in response to c-di-GMP, while class II riboswitches acted as “on” switches. Transcriptional analyses of genes 3′ of c-di-GMP riboswitches over a broad range of c-di-GMP levels showed that relatively modest changes in c-di-GMP levels are capable of altering gene transcription, with concomitant effects on microbial behavior. This work expands the known c-di-GMP signaling network inC. difficileand emphasizes the role of the riboswitches in controlling known and putative virulence factors inC. difficile.IMPORTANCEInClostridium difficile, the signaling molecule c-di-GMP regulates multiple processes affecting its ability to cause disease, including swimming and surface motility, biofilm formation, toxin production, and intestinal colonization. In this study, we used RNA-seq to define the transcriptional regulon of c-di-GMP inC. difficile. Many new targets of c-di-GMP regulation were identified, including multiple putative colonization factors. Transcriptional analyses revealed a prominent role for riboswitches in c-di-GMP signaling. Only a subset of the 16 previously predicted c-di-GMP riboswitches were functionalin vivoand displayed potential variability in their response kinetics to c-di-GMP. This work underscores the importance of studying c-di-GMP riboswitches in a relevant biological context and highlights the role of the riboswitches in controlling gene expression inC. difficile.


2015 ◽  
Vol 59 (11) ◽  
pp. 7084-7085 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Meghan A. Wallace ◽  
Tiffany Hink ◽  
Erik R. Dubberke ◽  
Carey-Ann D. Burnham

ABSTRACTCeftolozane-tazobactam (C/T) is approved for the treatment of complicated intra-abdominal and urinary tract infections and has varied activity against anaerobic bacteria. Here, we evaluate the activity of C/T against a phylogenetically diverse collection ofClostridium difficileisolates and report uniformly high MICs (≥256 μg/ml) to C/T.


2010 ◽  
Vol 77 (2) ◽  
pp. 471-478 ◽  
Author(s):  
Andrea H. Hartman ◽  
Hualan Liu ◽  
Stephen B. Melville

ABSTRACTClostridium perfringensis a Gram-positive anaerobic pathogen which causes many diseases in humans and animals. While some genetic tools exist for working withC. perfringens, a tightly regulated, inducible promoter system is currently lacking. Therefore, we constructed a plasmid-based promoter system that provided regulated expression when lactose was added. This plasmid (pKRAH1) is anEscherichia coli-C. perfringensshuttle vector containing the gene encoding a transcriptional regulator, BgaR, and a divergent promoter upstream of genebgaL(bgaR-PbgaL). To measure transcription at thebgaLpromoter in pKRAH1, theE. colireporter genegusA, encoding β-glucuronidase, was placed downstream of the PbgaLpromoter to make plasmid pAH2. When transformed into three strains ofC. perfringens, pAH2 exhibited lactose-inducible expression.C. perfringensstrain 13, a commonly studied strain, has endogenous β-glucuronidase activity. We mutated genebglR, encoding a putative β-glucuronidase, and observed an 89% decrease in endogenous activity with no lactose. This combination of a system for regulated gene expression and a mutant of strain 13 with low β-glucuronidase activity are useful tools for studying gene regulation and protein expression in an important pathogenic bacterium. We used this system to express theyfp-pilBgene, comprised of a yellow fluorescent protein (YFP)-encoding gene fused to an assembly ATPase gene involved in type IV pilus-dependent gliding motility inC. perfringens. Expression in the wild-type strain showed that YFP-PilB localized mostly to the poles of cells, but in apilCmutant it localized throughout the cell, demonstrating that the membrane protein PilC is required for polar localization of PilB.


2006 ◽  
Vol 6 (9) ◽  
pp. 2841-2852 ◽  
Author(s):  
Larry D. Galuppo ◽  
Sarah W. Kamau ◽  
Benedikt Steitz ◽  
Paul O. Hassa ◽  
Monika Hilbe ◽  
...  

This study evaluated in vivo gene delivery and subsequent gene expression within cells of the synovium in the presence of static and pulsating magnetic field application following intraarticular injection of superparamagnetic iron oxide nanoparticles linked to plasmids containing reporter genes encoding for fluorescent proteins. Plasmids encoding genes for either green fluorescent protein or red fluorescent protein were bound to superparamagnetic nanoparticles coated with polyethyleneimine. Larger (200–250 nm) and smaller (50 nm) nanoparticles were compared to evaluate the effects of size on transfection efficiency as well as any associated intraarticular reaction. Comparisons between groups were evaluated at 24, 72, and 120 h time periods. Inflammatory response was mild to moderate for all injected particles, but was present in the majority of synovial membrane samples evaluated. Larger particles tended to be associated with more inflammation than smaller ones. Nevertheless, intraarticular application of both experimental and control nanoparticles were well tolerated clinically. Gene expression as determined by observation of either green or red intracellular fluorescence was difficult to assess by both epifluorescent light, and confocal microscopy. An insufficient concentration of nanoparticles in relation to joint volume likely resulted in a limited number of samples with positive evidence of iron staining and with suspected positive evidence of cells expressing fluorescent proteins. Our results indicate that intraarticular administration of functionalized superparamagnetic iron oxide nanoparticles resulted in a mild to moderate synovitis and there was in conclusive evidence of gene expression. Further research is warranted to determine the best and most effective reporter assay for assessment of the in vivo gene delivery into the joints. In addition, the best suited concentration and size of nanoparticles, which will optimize gene delivery and expression, while minimizing intraarticular inflammation, needs to be determined.


2014 ◽  
Vol 13 (3) ◽  
pp. 383-391 ◽  
Author(s):  
Chien Lam ◽  
Ethan Santore ◽  
Elizabeth Lavoie ◽  
Leor Needleman ◽  
Nicholas Fiacco ◽  
...  

ABSTRACT During ascospore formation in Saccharomyces cerevisiae , the secretory pathway is reorganized to create new intracellular compartments, termed prospore membranes. Prospore membranes engulf the nuclei produced by the meiotic divisions, giving rise to individual spores. The shape and growth of prospore membranes are constrained by cytoskeletal structures, such as septin proteins, that associate with the membranes. Green fluorescent protein (GFP) fusions to various proteins that associate with septins at the bud neck during vegetative growth as well as to proteins encoded by genes that are transcriptionally induced during sporulation were examined for their cellular localization during prospore membrane growth. We report localizations for over 100 different GFP fusions, including over 30 proteins localized to the prospore membrane compartment. In particular, the screen identified IRC10 as a new component of the leading-edge protein complex (LEP), a ring structure localized to the lip of the prospore membrane. Localization of Irc10 to the leading edge is dependent on SSP1 , but not ADY3 . Loss of IRC10 caused no obvious phenotype, but an ady3 irc10 mutant was completely defective in sporulation and displayed prospore membrane morphologies similar to those of an ssp1 strain. These results reveal the architecture of the LEP and provide insight into the evolution of this membrane-organizing complex.


2011 ◽  
Vol 79 (9) ◽  
pp. 3821-3832 ◽  
Author(s):  
Karren M. Plain ◽  
Kumudika de Silva ◽  
John Earl ◽  
Douglas J. Begg ◽  
Auriol C. Purdie ◽  
...  

ABSTRACTVirulent mycobacterial infections progress slowly, with a latent period that leads to clinical disease in a proportion of cases.Mycobacterium aviumsubsp.paratuberculosisis an intracellular pathogen that causes paratuberculosis or Johne's disease (JD), a chronic intestinal disease of ruminants. Indoleamine 2,3-dioxygenase (IDO), an enzyme that regulates tryptophan metabolism, was originally reported to have a role in intracellular pathogen killing and has since been shown to have an important immunoregulatory role in chronic immune diseases. Here we demonstrate an association between increased IDO levels and progression to clinical mycobacterial disease in a natural host, characterizing gene expression, protein localization, and functional effects. IDO mRNA levels were significantly increased inM. aviumsubsp.paratuberculosis-infected monocytic cells. Levels of both IDO gene and protein expression were significantly upregulated within the affected tissues of sheep with JD, particularly at the site of primary infection, the ileum, of animals with severe multibacillary disease. Lesion severity was correlated with the level of IDO gene expression. IDO gene expression was also increased in the peripheral blood cells ofM. aviumsubsp.paratuberculosis-exposed sheep and cattle. IDO breaks down tryptophan, and systemic increases were functional, as shown by decreased plasma tryptophan levels, which correlated with the onset of clinical signs, a stage well known to be associated with Th1 immunosuppression. IDO may be involved in downregulating immune responses toM. aviumsubsp.paratuberculosisand other virulent mycobacteria, which may be an example of the pathogen harnessing host immunoregulatory pathways to aid survival. These findings raise new questions about the host-mycobacterium interactions in the progression from latent to clinical disease.


2013 ◽  
Vol 80 (4) ◽  
pp. 1477-1481 ◽  
Author(s):  
Karina Klevanskaa ◽  
Nadja Bier ◽  
Kerstin Stingl ◽  
Eckhard Strauch ◽  
Stefan Hertwig

ABSTRACTAn efficient electroporation procedure forVibrio vulnificuswas designed using the new cloning vector pVv3 (3,107 bp). Transformation efficiencies up to 2 × 106transformants per μg DNA were achieved. The vector stably replicated in bothV. vulnificusandEscherichia coliand was also successfully introduced intoVibrio parahaemolyticusandVibrio cholerae. To demonstrate the suitability of the vector for molecular cloning, the green fluorescent protein (GFP) gene and thevvhBAhemolysin operon were inserted into the vector and functionally expressed inVibrioandE. coli.


2016 ◽  
Vol 198 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Na Ke ◽  
Dirk Landgraf ◽  
Johan Paulsson ◽  
Mehmet Berkmen

ABSTRACTThe use of fluorescent and luminescent proteins in visualizing proteins has become a powerful tool in understanding molecular and cellular processes within living organisms. This success has resulted in an ever-increasing demand for new and more versatile protein-labeling tools that permit light-based detection of proteins within living cells. In this report, we present data supporting the use of the self-labeling HaloTag protein as a light-emitting reporter for protein fusions within the model prokaryoteEscherichia coli. We show that functional protein fusions of the HaloTag can be detected bothin vivoandin vitrowhen expressed within the cytoplasmic or periplasmic compartments ofE. coli. The capacity to visually detect proteins localized in various prokaryotic compartments expands today's molecular biologist toolbox and paves the path to new applications.IMPORTANCEVisualizing proteins microscopically within living cells is important for understanding both the biology of cells and the role of proteins within living cells. Currently, the most common tool is green fluorescent protein (GFP). However, fluorescent proteins such as GFP have many limitations; therefore, the field of molecular biology is always in need of new tools to visualize proteins. In this paper, we demonstrate, for the first time, the use of HaloTag to visualize proteins in two different compartments within the model prokaryoteEscherichia coli. The use of HaloTag as an additional tool to visualize proteins within prokaryotes increases our capacity to ask about and understand the role of proteins within living cells.


Sign in / Sign up

Export Citation Format

Share Document