scholarly journals Ferric Iron Reduction by Bacteria Associated with the Roots of Freshwater and Marine Macrophytes

1999 ◽  
Vol 65 (10) ◽  
pp. 4393-4398 ◽  
Author(s):  
G. M. King ◽  
Meredith A. Garey

ABSTRACT In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments.

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 304 ◽  
Author(s):  
Samantha Drouet ◽  
Emilie A. Leclerc ◽  
Laurine Garros ◽  
Duangjai Tungmunnithum ◽  
Atul Kabra ◽  
...  

Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum flavonolignans follow by their quantification using LC system. The optimal conditions of this UAE method were: aqueous EtOH 54.5% (v/v) as extraction solvent, with application of an ultrasound (US) frequency of 36.6 kHz during 60 min at 45 °C with a liquid to solid ratio of 25:1 mL/g dry weight (DW). Following its optimization using a full factorial design, the extraction method was validated according to international standards of the association of analytical communities (AOAC) to ensure precision and accuracy in the quantitation of each component of the SILM mixture. The efficiency of this UAE was compared with maceration protocol. Here, the optimized and validated conditions of the UAE allowed the highest extraction yields of SILM and its constituents in comparison to maceration. During UAE, the antioxidant capacity of the extracts was retained, as confirmed by the in vitro assays CUPRAC (cupric ion reducing antioxidant capacity) and inhibition of AGEs (advanced glycation end products). The skin anti-aging potential of the extract obtained by UAE was also confirmed by the strong in vitro cell-free inhibition capacity of both collagenase and elastase. To summarize, the UAE procedure presented here is a green and efficient method for the extraction and quantification of SILM and its constituents from the fruits of S. marianum, making it possible to generate extracts with attractive antioxidant and anti-aging activities for future cosmetic applications.


2019 ◽  
Vol 11 (12) ◽  
pp. 3361 ◽  
Author(s):  
Rizwan Ali Sheirdil ◽  
Rifat Hayat ◽  
Xiao-Xia Zhang ◽  
Nadeem Akhtar Abbasi ◽  
Safdar Ali ◽  
...  

The application of plant growth-promoting rhizobacteria (PGPR) could allow growers to reduce the use of synthetic fertilizers and increase the sustainability of crop production. Wheat is the main staple food crop of Pakistan, and few studies have reported on the impact of PGPR on wheat crops. To determine if PGPR can maintain wheat productivity with reduced fertilizer applications, we isolated bacteria from the rhizosphere of wheat grown in sandy loam. We selected 10 strains based on in vitro assays for traits associated with PGPR: ACC deaminase activity, siderophore productivity, P-solubilization, and productivity of indole acetic acid (IAA). Furthermore, the strains were tested in three experiments (using a growth-chamber, pots with an experimental area of 0.05 m2, and a field). Strains that possessed the four traits associated with PGPR increased the shoot length, root length, and fresh and dry weight of plants in the growth chamber study. Similarly, under the pot trial, maximum crop traits were observed under the consortium + half dose, while under field conditions maximum crop parameters were detected in the case of consortium 1 and consortium 2 along with half the recommended dose of fertilizer. This confirms that this consortium could provide growers with a sustainable approach to reduce synthetic fertilizer usage in wheat production.


2001 ◽  
Vol 67 (9) ◽  
pp. 3958-3963 ◽  
Author(s):  
Bram A. van de Pas ◽  
Stefan Jansen ◽  
Cor Dijkema ◽  
Gosse Schraa ◽  
Willem M. de Vos ◽  
...  

ABSTRACT The amount of energy that can be conserved via halorespiration byDesulfitobacterium dehalogenans JW/IU-DC1 was determined by comparison of the growth yields of cells grown with 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) and different electron donors. Cultures that were grown with lactate, pyruvate, formate, or hydrogen as an electron donor and Cl-OHPA as an electron acceptor yielded 3.1, 6.6, 1.6, and 1.6 g (dry weight) per mol of reduction equivalents, respectively. Fermentative growth on pyruvate yielded 14 g (dry weight) per mol of pyruvate oxidized. Pyruvate was not fermented stoichiometrically to acetate and lactate, but an excess of acetate was produced. Experiments with 13C-labeled bicarbonate showed that during pyruvate fermentation, approximately 9% of the acetate was formed from the reduction of CO2. Comparison of the growth yields suggests that 1 mol of ATP is produced per mol of acetate produced by substrate-level phosphorylation and that there is no contribution of electron transport phosphorylation whenD. dehalogenans grows on lactate plus Cl-OHPA or pyruvate plus Cl-OHPA. Furthermore, the growth yields indicate that approximately 1/3 mol of ATP is conserved per mol of Cl-OHPA reduced in cultures grown in formate plus Cl-OHPA and hydrogen plus Cl-OHPA. Because neither formate nor hydrogen nor Cl-OHPA supports substrate-level phosphorylation, energy must be conserved through the establishment of a proton motive force. Pyruvate ferredoxin oxidoreductase, lactate dehydrogenase, formate dehydrogenase, and hydrogenase were localized by in vitro assays with membrane-impermeable electron acceptors and donors. The orientation of chlorophenol-reductive dehalogenase in the cytoplasmic membrane, however, could not be determined. A model is proposed, which may explain the topology analyses as well as the results obtained in the yield study.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Filipa B. Pimentel ◽  
Marlene Machado ◽  
Maria Cermeño ◽  
Thanyaporn Kleekayai ◽  
Susana Machado ◽  
...  

The conchocelis life cycle stage of P. dioica represents an unexplored source of bioactive compounds. The aim of this study was to generate and characterise, for the first time, hydrolysates of conchocelis using a specific combination of proteases (Prolyve® and Flavourzyme®). Hydrolysate molecular mass distribution and free amino acid contents were assessed, and the antioxidant activity was determined using a range of in vitro assays. The protein content and the total amino acid profiles of conchocelis were also studied. Conchocelis contained ~25% of protein (dry weight basis) and had a complete profile of essential amino acids. Direct sequential enzymatic treatment modified the profile of the generated compounds, increasing the amount of low molecular weight peptides (<1 kDa). There was a significant improvement in the antioxidant activity of the hydrolysates compared with the control (up to 2.5-fold), indicating their potential as a novel source of antioxidant ingredients.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 244
Author(s):  
Sihle Ngxabi ◽  
Muhali Olaide Jimoh ◽  
Learnmore Kambizi ◽  
Charles Petrus Laubscher

This study evaluated the effect of salinity and soilless media on the vegetative growth, phytochemicals, and antioxidant capacity of Trachyandra ciliata (wild cabbage) to develop its growth protocol and explore its potential as a natural source of secondary metabolites. Treatments consisted of different concentrations of sodium chloride (NaCl), control- 0 mM, 100 mM, 200 mM, 400 mM, while different in vitro assays were used for phytochemical and antioxidant screenings. Findings from the study showed that low salinity (100 mM) significantly increased chlorophyll content, plant height, leaf number, plant fresh weight, and production of inflorescence, particularly in Peat-Perlite-Vermiculite (PPV) medium. In contrast, the control was the most productive treatment in plant dry weight except for the inflorescence. The highest antioxidant activity was observed in 200 mM of NaCl treatment in combination with PPV medium, which also produced the highest mean values for polyphenols, while 100 mM was the best for flavonols. Therefore, T. ciliata proved to be more productive vegetatively under low salinity in combination with PPV soilless media. A combination of 200 mM + PPV treatment was also recommended for maximum production of antioxidants for T. ciliata.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1975 ◽  
Vol 33 (03) ◽  
pp. 617-631 ◽  
Author(s):  
H. S Kingdon ◽  
R. L Lundblad ◽  
J. J Veltkamp ◽  
D. L Aronson

SummaryFactor IX concentrates manufactured from human plasma and intended for therapeutic infusion in man have been suspected for some time of being potentially thrombogenic. In the current studies, assays were carried out in vitro and in vivo for potentially thrombogenic materials. It was possible to rank the various materials tested according to the amount of thrombogenic material detected. For concentrates not containing heparin, there was substantial agreement between the in vivo and in vitro assays, with a coefficient of correlation of 0.77. There was no correlation between the assays for thrombogenicity and the antithrombin III content. We conclude that many presently available concentrates of Factor IX contain substantial amounts of potentially thrombogenic enzymes, and that this fact must be considered in arriving at the decision whether or not to use them therapeutically.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


Sign in / Sign up

Export Citation Format

Share Document