scholarly journals Molecular and Biochemical Analysis of Two β-Galactosidases from Bifidobacterium infantisHL96

2001 ◽  
Vol 67 (9) ◽  
pp. 4256-4263 ◽  
Author(s):  
Ming-Ni Hung ◽  
Zhicheng Xia ◽  
Nien-Tai Hu ◽  
Byong H. Lee

ABSTRACT Two genes encoding β-galactosidase isoenzymes,β-galI and β-galIII, fromBifidobacterium infantis HL96 were revealed on 3.6- and 2.4-kb DNA fragments, respectively, by nucleotide sequence analysis of the two fragments. β-galI (3,069 bp) encodes a 1,022-amino-acid (aa) polypeptide with a predicted molecular mass of 113 kDa. A putative ribosome binding site and a promoter sequence were recognized at the 5′ flanking region of β-galI. Further upstream a partial sequence of an open reading frame revealed a putative lactose permease gene transcribing divergently fromβ-galI. The β-galIII gene (2,076 bp) encodes a 691-aa polypeptide with a calculated molecular mass of 76 kDa. A rho-independent transcription terminator-like sequence was found 25 bp downstream of the termination codon. The amino acid sequences of β-GalI and β-GalIII are homologous to those found in the LacZ and the LacG families, respectively. The acid-base, nucleophilic, and substrate recognition sites conserved in the LacZ family were found in β-GalI, and a possible acid-base site proposed for the LacG family was located in β-GalIII, which featured a glutamate at residue 160. The coding regions of the β-galI andβ-galIII genes were each cloned downstream of a T7 promoter for overexpression in Escherichia coli. The molecular masses of the overexpressed proteins, as estimated by polyacrylamide gel electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, agree with their predicted molecular weights. β-GalI and β-GalIII were specific for β-d-anomer-linked galactoside substrates. Both are more active in response to ONPG (o-nitrophenyl-β-d-galactopyranoside) than in response to lactose, particularly β-GalIII. The galacto-oligosaccharide yield in the reaction catalyzed by β-GalI at 37°C in 20% (wt/vol) lactose solution was 130 mg/ml, which is more than six times higher than the maximum yield obtained with β-GalIII. The structure of the major trisaccharide produced by β-GalI catalysis was characterized asO-β-d-galactopyranosyl-(1-3)-O-β-d-galactopyranosyl-(1-4)-d-glucopyranose (3′-galactosyl-lactose).

1998 ◽  
Vol 64 (9) ◽  
pp. 3282-3289 ◽  
Author(s):  
Kazuaki Igarashi ◽  
Yuji Hatada ◽  
Hiroshi Hagihara ◽  
Katsuhisa Saeki ◽  
Mikio Takaiwa ◽  
...  

ABSTRACT A novel liquefying α-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein−1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55°C. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1,548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (α/β)8 barrel motif in domain A.


2001 ◽  
Vol 67 (2) ◽  
pp. 865-871 ◽  
Author(s):  
Gábor Giczey ◽  
Zoltán Kerényi ◽  
László Fülöp ◽  
László Hornok

ABSTRACT During sclerotial infection of Sclerotinia sclerotiorumthe mycoparasite Coniothyrium minitans penetrates through the host cell wall, which contains β-1,3-glucan as its major component. A PCR-based strategy was used to clone a β-1,3-glucanase-encoding gene, designated cmg1, from a cDNA library of the fungus. The nucleotide and deduced amino acid sequences of this gene showed high levels of similarity to the sequences of other fungal exo-β-1,3-glucanase genes. The calculated molecular mass of the deduced protein (without the predicted 24-amino-acid N-terminal secretion signal peptide) was 83,346 Da, and the estimated pI was 4.73. Saccharomyces cerevisiaeINVSc1 expressing the cmg1 gene secreted a ∼100-kDa β-1,3-glucanase enzyme (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) into the culture medium. N-terminal sequence analysis of the purified recombinant enzyme revealed that the secreted enzyme starts at Ala-32, seven amino acids downstream from the predicted signal peptidase cleavage site. The purified recombinant glucanase inhibited in vitro mycelial growth ofS. sclerotiorum by 35 and 85% at concentrations of 300 and 600 μg ml−1, respectively. A single copy of thecmg1 gene is present in the genome of C. minitans. Northern analyses indicated increases in the transcript levels of cmg1 due to both carbon starvation and the presence of ground sclerotia of S. sclerotiorum; only slight repression was observed in the presence of 2% glucose. Expression of cmg1 increased during parasitic interaction with S. sclerotiorum.


2002 ◽  
Vol 184 (7) ◽  
pp. 1865-1872 ◽  
Author(s):  
Katsushiro Miyamoto ◽  
Eiji Nukui ◽  
Hiroyuki Itoh ◽  
Takaji Sato ◽  
Takeshi Kobayashi ◽  
...  

ABSTRACT Alteromonas sp. strain O-7 secretes several proteins in response to chitin induction. We have found that one of these proteins, designated AprIV, is a novel chitin-binding protease involved in chitinolytic activity. The gene encoding AprIV (aprIV) was cloned in Escherichia coli. DNA sequencing analysis revealed that the open reading frame of aprIV encoded a protein of 547 amino acids with a calculated molecular mass of 57,104 Da. AprIV is a modular enzyme consisting of five domains: the signal sequence, the N-terminal proregion, the family A subtilase region, the polycystic kidney disease domain (PkdD), and the chitin-binding domain type 3 (ChtBD3). Expression plasmids coding for PkdD or both PkdD and ChtBD (PkdD-ChtBD) were constructed. The PkdD-ChtBD but not PkdD exhibited strong binding to α-chitin and β-chitin. Western and Northern analyses demonstrated that aprIV was induced in the presence of N-acetylglucosamine, N-acetylchitobiose, or chitin. Native AprIV was purified to homogeneity from Alteromonas sp. strain O-7 and characterized. The molecular mass of mature AprIV was estimated to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of AprIV were pH 11.5 and 35°C, respectively, and even at 10°C the enzyme showed 25% of the maximum activity. Pretreatment of native chitin with AprIV significantly promoted chitinase activity.


1984 ◽  
Vol 222 (3) ◽  
pp. 701-709 ◽  
Author(s):  
R L Olsen ◽  
C Little

The subunit composition of human myeloperoxidase was studied with the use of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration. The subunit pattern observed depended on the manner in which the enzyme was treated before analysis. Reduction before heat treatment in detergent led to two main protein species (Mr 57 000 and 10 500), whereas reduction during or after heat treatment yielded an additional species of Mr 39 000. Heating without any reductive pretreatment yielded the 39 000-Mr form as the major electrophoretic species. Carbohydrate staining showed large amounts of sugar on the 57 000-Mr species and little on the 10 500-Mr form. Significant amounts of haem were associated with this latter subunit. Haem also seemed to be associated with the 57 000-Mr form but not with the 39 000-Mr one. These three subunit forms were isolated and their amino acid composition analysed. The 57 000-Mr and 39 000-Mr forms had very similar amino acid composition and yielded an apparently identical collection of fragments on incubation with CNBr. Once separated, the subunits could not be interconverted. Generally, minor amounts of other molecular-mass forms were observed. The nature of the various molecular-mass forms originating from myeloperoxidase is discussed.


1998 ◽  
Vol 180 (12) ◽  
pp. 3209-3217 ◽  
Author(s):  
Cynthia D. Brimer ◽  
T. C. Montie

ABSTRACT Pseudomonas aeruginosa a-type strains produce flagellin proteins which vary in molecular weight between strains. To compare the properties of a-type flagellins, the flagellin genes of severalPseudomonas aeruginosa a-type strains, as determined by interaction with specific anti-a monoclonal antibody, were cloned and sequenced. PCR amplification of the a-type flagellin gene fragments from five strains each yielded a 1.02-kb product, indicating that the gene size is not likely to be responsible for the observed molecular weight differences among the a-type strains. The flagellin amino acid sequences of several a-type strains (170018, 5933, 5939, and PAK) were compared, and that of 170018 was compared with that of PAO1, a b-type strain. The former comparisons revealed that a-type strains are similar in amino acid sequence, while the latter comparison revealed differences between 170018 and PAO1. Posttranslational modification was explored for its contribution to the observed differences in molecular weight among the a-type strains. A biotin-hydrazide glycosylation assay was performed on the flagellins of three a-type strains (170018, 5933, and 5939) and one b-type strain (M2), revealing a positive glycosylation reaction for strains 5933 and 5939 and a negative reaction for 170018 and M2. Deglycosylation of the flagellin proteins with trifluoromethanesulfonic acid (TFMS) confirmed the glycosylation results. A molecular weight shift was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis for the TFMS-treated flagellins of 5933 and 5939. These results indicate that the molecular weight discrepancies observed for the a-type flagellins can be attributed, at least in part, to glycosylation of the protein. Anti-a flagellin monoclonal antibody reacted with the TFMS-treated flagellins, suggesting that the glycosyl groups are not a necessary component of the epitope for the human anti-a monoclonal antibody. Comparisons between a-type sequences and a b-type sequence (PAO1) will aid in delineation of the epitope for this monoclonal antibody.


1999 ◽  
Vol 65 (9) ◽  
pp. 4028-4031 ◽  
Author(s):  
Takeshi Shibasaki ◽  
Hideo Mori ◽  
Shigeru Chiba ◽  
Akio Ozaki

ABSTRACT Microbial proline 4-hydroxylases, which hydroxylate freel-proline totrans-4-hydroxy-l-proline, were screened in order to establish an industrial system for biotransformation of l-proline totrans-4-hydroxy-l-proline. Enzyme activities were detected in eight strains, including strains ofDactylosporangium spp. and Amycolatopsis spp. The Dactylosporangium sp. strain RH1 enzyme was partially purified 3,300-fold and was estimated to be a monomer polypeptide with an apparent molecular mass of 31 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Degenerate primers based on the N-terminal amino acid sequence of the 31-kDa polypeptide were synthesized in order to amplify the corresponding 71-bp DNA fragment. A 5.5-kbp DNA fragment was isolated by using the 71-bp fragment labeled with digoxigenin as a probe for a genomic library ofDactylosporangium sp. strain RH1 constructed inEscherichia coli. One of the open reading frames found in the cloned DNA, which encoded a 272-amino-acid polypeptide (molecular mass, 29,715 daltons), was thought to be a proline 4-hydroxylase gene. The gene was expressed in E. coli as a fused protein with the N-terminal 34 amino acids of the β-galactosidase α-fragment. The E. coli recombinant exhibited proline 4-hydroxylase activity that was 13.6-fold higher than the activity in the original strain, Dactylosporangium sp. strain RH1. No homology was detected with other 2-oxoglutarate-dependent dioxygenases when databases were searched; however, the histidine motif conserved in 2-oxoglutarate-dependent dioxygenases was found in the gene.


2002 ◽  
Vol 184 (21) ◽  
pp. 5955-5965 ◽  
Author(s):  
Thomas Hansen ◽  
Bianca Reichstein ◽  
Roland Schmid ◽  
Peter Schönheit

ABSTRACT An ATP-dependent glucokinase of the hyperthermophilic aerobic crenarchaeon Aeropyrum pernix was purified 230-fold to homogeneity. The enzyme is a monomeric protein with an apparent molecular mass of about 36 kDa. The apparent Km values for ATP and glucose (at 90°C and pH 6.2) were 0.42 and 0.044 mM, respectively; the apparent V max was about 35 U/mg. The enzyme was specific for ATP as a phosphoryl donor, but showed a broad spectrum for phosphoryl acceptors: in addition to glucose, which showed the highest catalytic efficiency (k cat/Km ), the enzyme also phosphorylates glucosamin, fructose, mannose, and 2-deoxyglucose. Divalent cations were required for maximal activity: Mg2+, which was most effective, could partially be replaced with Co2+, Mn2+, and Ni2+. The enzyme had a temperature optimum of at least 100°C and showed significant thermostability up to 100°C. The coding function of open reading frame (ORF) APE2091 (Y. Kawarabayasi, Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, H. Nakazawa, M. Takamiya, S. Masuda, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, and H. Kikuchi, DNA Res. 6:83-101, 145-152, 1999), previously annotated as gene glk, coding for ATP-glucokinase of A. pernix, was proved by functional expression in Escherichia coli. The purified recombinant ATP-dependent glucokinase showed a 5-kDa higher molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but almost identical kinetic and thermostability properties in comparison to the native enzyme purified from A. pernix. N-terminal amino acid sequence of the native enzyme revealed that the translation start codon is a GTG 171 bp downstream of the annotated start codon of ORF APE2091. The amino acid sequence deduced from the truncated ORF APE2091 revealed sequence similarity to members of the ROK family, which comprise bacterial sugar kinases and transcriptional repressors. This is the first report of the characterization of an ATP-dependent glucokinase from the domain of Archaea, which differs from its bacterial counterparts by its monomeric structure and its broad specificity for hexoses.


2005 ◽  
Vol 68 (1) ◽  
pp. 11-17 ◽  
Author(s):  
EDWARD A. SVETOCH ◽  
NORMAN J. STERN ◽  
BORIS V. ERUSLANOV ◽  
YURI N. KOVALEV ◽  
LARISA I. VOLODINA ◽  
...  

We evaluated anti-Campylobacter activity among 365 Bacillus and Paenibacillus isolates from poultry production environments. One novel antagonistic Bacillus circulans and three Paenibacillus polymyxa strains were identified and further studied. Cell-free ammonium sulfate precipitate (crude antimicrobial preparation) was obtained from each candidate culture. Zones of Campylobacter growth inhibition surrounding 10 μl of this crude antimicrobial preparation were quantified using a spot test. Campylobacter growth resumed when the preparation was preincubated with selected protease enzymes, demonstrating peptide characteristics consistent with a bacteriocin. These peptides were further purified using combinations of molecular mass resolution and ion exchange chromatography. Molecular masses of the peptides were estimated at approximately 3,500 Da by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Isoelectric focusing was used to determine the pI values of the peptides. Amino acid sequences of the bacteriocins and more precise molecular masses were obtained by matrix-assisted laser desorption and ionization–time of flight (MALDI-TOF) analysis. The bacteriocin from P. polymyxa NRRL B-30507 had a pI of 4.8, that from P. polymyxa NRRL B-30509 had a pI of 7.2, that from P. polymyxa NRRL B-30508 had a pI of 4.8, and that from B. circulans NRRL B-30644 had a pI of 7.8. The amino acid sequences were consistent with those of class IIa bacteriocins. These antagonists and the corresponding bacteriocins may be useful in the control of Campylobacter infection in poultry.


1976 ◽  
Vol 155 (1) ◽  
pp. 5-17 ◽  
Author(s):  
K B M Reid

1. Digestion of human subcomponent C1q with pepsin at pH4.45 for 20h at 37 degrees C fragmented most of the non-collagen-like amino acid sequences in the molecule to small peptides, whereas the entire regions of collagen-like sequence that comprised 38% by weight of the subcomponent C1q were left intact. 2. The collagen-like fraction of the digest was eluted in the void volume of a Sephadex G-200 column, was was showm to be composed of two major fragments when examined by electrophoresis on polyacrylamide gels run in buffers containing sodium dodecyl sulphate. These fragments were separated on CM-cellulose at pH4.9 in buffers containing 7.5M-urea. 3. Human subcomponent C1q on reduction and alkylation yields equimolar amounnts of three chains, which have been designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. One of the pepsin fragments was shown to be composed of the N-terminal 95 residues of the A chain linked, via residue A4, by a single disulphide bond to a residue in the sequence B2-B6 in the N-terminal 91 residues of the B chain. The second pepsin fragment was shown to be composed of a disulphide-linked dimer of the N-terminal 94 residues of the C chain, the only disulphide bond being located at residue C4.4. The mol. wts. of the unoxidized and oxidized pepsin fragments were estimated from their amino acid compositions to be 20 000 and 18 200 for the A-B and C-C dimers and 11 400, 8800 and 9600 for the collagen-like fragments of the A, B and C chains respectively. Estimation of the molecular weights of the peptic fragments by polyacrylamide-gel electrophoresis run in the presence of sodium dodecyl sulphate gave values that were approx. 50% higher than expected from the amino acid sequence data. This is probably due to the high collagen-like sequence content of these fragments.


Sign in / Sign up

Export Citation Format

Share Document