scholarly journals Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolates from Swine in Ontario

2005 ◽  
Vol 71 (11) ◽  
pp. 6753-6761 ◽  
Author(s):  
Patrick Boerlin ◽  
Rebeccah Travis ◽  
Carlton L. Gyles ◽  
Richard Reid-Smith ◽  
Nicol Janecko Heather Lim ◽  
...  

ABSTRACT A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by ≥8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (≤3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.

2020 ◽  
Vol 28 (2) ◽  
pp. 81
Author(s):  
Raouia Ben Rhouma ◽  
Ahlem Jouini ◽  
Amira Klibi ◽  
Safa Hamrouni ◽  
Aziza Boubaker ◽  
...  

The purpose of this study was to identify <em>Escherichia coli</em> isolates in diarrhoeic and healthy rabbits in Tunisia and characterise their virulence and antibiotic resistance genes. In the 2014-2015 period, 60 faecal samples from diarrhoeic and healthy rabbits were collected from different breeding farms in Tunisia. Susceptibility to 14 antimicrobial agents was tested by disc diffusion method and the mechanisms of gene resistance were evaluated using polymerase chain reaction and sequencing methods. Forty <em>E. coli</em> isolates were recovered in selective media. High frequency of resistance to tetracycline (95%) was detected, followed by different levels of resistance to sulphonamide (72.5%), streptomycin (62.5%), trimethoprim-sulfamethoxazole (60%), nalidixic acid (32.5%), ampicillin (37.5%) and ticarcillin (35%). <em>E. coli</em> strains were susceptible to cefotaxime, ceftazidime and imipenem. Different variants of bla<sub>TEM</sub>, <em>tet</em>, <em>sul</em> genes were detected in most of the strains resistant to ampicillin, tetracycline and sulphonamide, respectively. The presence of class 1 integron was studied in 29 sulphonamide-resistant <em>E. coli</em> strains from which 15 harboured class 1 integron with four different arrangements of gene cassettes, <em>dfrA17</em>+<em>aadA5</em> (n=9), <em>dfrA1</em> + <em>aadA1</em> (n=4), <em>dfrA12</em> + <em>addA2</em> (n=1), <em>dfrA12</em>+<em>orf</em>+<em>addA2</em> (n=1). The <em>qnrB</em> gene was detected in six strains out of 13 quinolone-resistant <em>E. coli</em> strains. Seventeen <em>E. coli</em> isolates from diarrhoeic rabbits harboured the enteropathogenic eae genes associated with different virulence genes tested (<em>fimA</em>, <em>cnf1</em>, <em>aer</em>), and affiliated to B2 (n=8) and D (n=9) phylogroups. Isolated <em>E. coli</em> strains from healthy rabbit were harbouring <em>fim A</em> and/or <em>cnf1</em> genes and affiliated to A and B1 phylogroups. This study showed that <em>E. coli</em> strains from the intestinal tract of rabbits are resistant to the widely prescribed antibiotics in medicine. Therefore, they constitute a reservoir of antimicrobial-resistant genes, which may play a significant role in the spread of antimicrobial resistance. In addition, the eae virulence gene seemed to be implicated in diarrhoea in breeder rabbits in Tunisia.


2006 ◽  
Vol 72 (6) ◽  
pp. 4200-4206 ◽  
Author(s):  
Katia Hamelin ◽  
Guillaume Bruant ◽  
Abdel El-Shaarawi ◽  
Stephen Hill ◽  
Thomas A. Edge ◽  
...  

ABSTRACT Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment. For the first time, using a DNA microarray capable of detecting all currently described virulence genes and commonly found antimicrobial resistance genes, a survey of environmental E. coli isolates from recreational waters was carried out. A high proportion (29%) of 308 isolates from a beach site in the Great Lakes carried a pathotype set of virulence-related genes, and 14% carried antimicrobial resistance genes, findings consistent with a potential risk for public health. The results also showed that another 8% of the isolates had unusual virulence gene combinations that would be missed by conventional screening. This new application of a DNA microarray to environmental waters will likely have an important impact on public health, epidemiology, and microbial ecology in the future.


2009 ◽  
Vol 75 (5) ◽  
pp. 1373-1380 ◽  
Author(s):  
Leigh B. Rosengren ◽  
Cheryl L. Waldner ◽  
Richard J. Reid-Smith

ABSTRACT Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotypic resistance to at least one other drug, and every association found that the probability of observing the outcome resistance was increased by the presence of the predictor resistance. With one exception, each statistical association that was identified between a pair of resistance genes had a corresponding significant association identified between the phenotypes mediated by those genes. This suggests that associations between resistance phenotypes might predict coselection. If this hypothesis is confirmed, evaluation of the associations between resistance phenotypes could improve our knowledge of coselection dynamics and provide a cost-effective way to evaluate existing data until large-scale genotypic data collection becomes feasible. This could enable policy makers and users of antimicrobials to consider coselection in antimicrobial use decisions. This study also considered the unconditional relationships between resistance and virulence genes in E. coli from healthy pigs (aidA-1, eae, elt, estA, estB, fedA1, stx1, and stx2). Positive statistical associations would suggest that antimicrobial use may select for virulence in bacteria that may contaminate food or cause diarrhea in pigs. Fortunately, the odds of detecting a virulence gene were rarely increased by the presence of an antimicrobial resistance gene. This suggests that on-farm antimicrobial use did not select for the examined virulence factors in E. coli carried by this population of healthy pigs.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 383 ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Ali El-Kholy ◽  
Emad M. Riad ◽  
Hossam E. Mohamed ◽  
Mahmoud M. Elhaig ◽  
...  

Calf diarrhea is one of the considerable infectious diseases in calves, which results in tremendous economic losses globally. To determine the prevalence of Shiga-toxigenic E. coli (STEC) and Enterotoxigenic E. coli (ETEC) incriminated in calf diarrhea, with special reference to Shiga- toxins genes (stx1 and stx2) and enterotoxins genes (lt and sta) that govern their pathogenesis, as well as the virulence genes; eaeA (intimin) and f41(fimbrial adhesion), and the screening of their antibiogram and antimicrobial resistance genes; aadB, sul1, and bla-TEM, a total of 274 fecal samples were collected (April 2018–Feb 2019) from diarrheic calves at different farms in El-Sharqia Governorate, Egypt. The bacteriological examination revealed that the prevalence of E. coli in diarrheic calves was 28.8%. The serotyping of the isolated E. coli revealed 7 serogroups; O26, O128, O111, O125, O45, O119 and O91. Furthermore, the Congo red binding test was carried out, where 89.8% of the examined strains (n = 71) were positive. The antibiogram of the isolated strains was investigated; the majority of E. coli serotypes exhibit multidrug resistance (MDR) to four antimicrobial agents; neomycin, gentamycin, streptomycin, and amikacin. Polymerase chain reaction (PCR) was used to detect the prevalence of the virulence genes; stx1, stx2 lt, sta, f41 and eaeA, as well as the antimicrobial resistance genes; aadB, sul1, and bla-TEM. The prevalence of STEC was 20.2% (n = 16), while the prevalence of ETEC was 30.4% (n = 24). Briefly, the Shiga toxins genes; stx1 and stx2, are the most prevalent virulence genes associated with STEC, which are responsible for the pathogenesis of the disease and helped by the intimin gene (eaeA). In addition, the lt gene is the most prevalent enterotoxin gene accompanied by the ETEC strains, either alone or in combination with sta and/or f41 genes. The majority of pathogenic E. coli incriminated in calf diarrhea possesses the aadB resistance gene, followed by the sul1 gene. Enrofloxacin, florfenicol, amoxicillin-clavulanic acid, and ampicillin-sulbactam, are the most effective antimicrobial agents against the isolated STEC and ETEC strains.


Author(s):  
Katarzyna Ćwiek ◽  
Anna Woźniak-Biel ◽  
Magdalena Karwańska ◽  
Magdalena Siedlecka ◽  
Christine Lammens ◽  
...  

Abstract Background A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. Methods In this study, 318 E. coli strains were characterized by the prevalence of mcr1–mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. Results Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. Conclusions Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.


2019 ◽  
Vol 82 (7) ◽  
pp. 1183-1190
Author(s):  
SE HYUN SON ◽  
KWANG WON SEO ◽  
YEONG BIN KIM ◽  
HYE YOUNG JEON ◽  
EUN BI NOH ◽  
...  

ABSTRACT Edible offal, which is the nonmuscular part of the livestock, is a popular food product in many countries. However, it can be easily contaminated by bacteria, such as Escherichia coli, during slaughter and processing and regarded as a reservoir for transfer of antimicrobial-resistant bacteria to humans. This study aimed to investigate prevalence and characteristics of antimicrobial-resistant E. coli isolates from edible offal in Korea. A total of 320 chicken offal samples, 540 pig offal samples, and 560 cattle offal samples were collected. Among the 118 E. coli isolates obtained, resistance to at least one antimicrobial agent was revealed in 32 (100%), 46 (95.8%), and 26 (68.4%) isolates of chicken, pig, and cattle offals, respectively, with an overall prevalence of 88.1% (104 of 118). The isolates from chicken offal showed highest resistance to most antimicrobial agents, with the exception of higher ampicillin resistance for isolates from pig offal. In the distribution of antimicrobial resistance genes of 69 (58.5%) multidrug-resistant (MDR) E. coli, blaTEM-1 (97.1%), tetA (76.6%), sul2 (70.6%), and cmlA (57.4%) were most prevalent. Class 1 and class 2 integrons were detected in 82.6 and 2.9% of the MDR isolates, respectively. In total, seven virulence genes (eaeA, escV, astA, fimH, papC, sfa/focDE, and iucC) were also identified in the MDR isolates. The fimH gene was the most frequent (91.3%). Overall, 52 isolates from chicken (24 isolates, 96.0%), pig (16 isolates, 55.2%) and cattle (12 isolates, 80.0%) offals among MDR isolates were found to have some plasmid replicons. Frep (38 isolates) and FIB (27 isolates) replicons were more prevalent than other replicon types. The results suggest that edible offal can become a relevant reservoir of E. coli strains carrying various antimicrobial resistance and virulence genes. HIGHLIGHTS


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshitoshi Ogura ◽  
Takuya Ueda ◽  
Kei Nukazawa ◽  
Hayate Hiroki ◽  
Hui Xie ◽  
...  

Abstract The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2017 ◽  
Vol 37 (11) ◽  
pp. 1253-1260 ◽  
Author(s):  
Caroline Pissetti ◽  
Gabriela Orosco Werlang ◽  
Jalusa Deon Kich ◽  
Marisa Cardoso

ABSTRACT: The increasing antimicrobial resistance observed worldwide in bacteria isolated from human and animals is a matter of extreme concern and has led to the monitoring of antimicrobial resistance in pathogenic and commensal bacteria. The aim of this study was to evaluate the antimicrobial resistance profile of Escherichia coli isolated from pig carcasses and to assess the occurrence of relevant resistance genes. A total of 319 E. coli isolates were tested for antimicrobial susceptibility against different antimicrobial agents. Moreover, the presence of extended-spectrum β-lactamase (ESBL) and inducible ampC-β-lactamase producers was investigated. Eighteen multi-resistant strains were chosen for resistance gene detection and PFGE characterization. The study showed that resistance to antimicrobials is widespread in E. coli isolated from pig carcasses, since 86.2% of the strains were resistant to at least one antimicrobial and 71.5% displayed multi-resistance profiles. No ampC-producing isolates were detected and only one ESBL-producing E. coli was identified. Genes strA (n=15), floR (n=14), aac(3)IVa (n=13), tetB (n=13), sul2 (n=12), tetA (n=11), aph(3)Ia (n=8) and sul3 (n=5) were detected by PCR. PFGE analysis of these multi-resistant E. coli strains showed less than 80% similarity among them. We conclude that antimicrobial multi-resistant E. coli strains are common on pig carcasses and present highly diverse genotypes and resistance phenotypes and genotypes.


Sign in / Sign up

Export Citation Format

Share Document