scholarly journals Acquisition of Resistance to Extended-Spectrum Cephalosporins by Salmonella enterica subsp. enterica Serovar Newport and Escherichia coli in the Turkey Poult Intestinal Tract

2005 ◽  
Vol 71 (3) ◽  
pp. 1184-1192 ◽  
Author(s):  
C. Poppe ◽  
L. C. Martin ◽  
C. L. Gyles ◽  
R. Reid-Smith ◽  
P. Boerlin ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 β-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines.

2011 ◽  
Vol 55 (12) ◽  
pp. 5666-5675 ◽  
Author(s):  
Bashar W. Shaheen ◽  
Rajesh Nayak ◽  
Steven L. Foley ◽  
Ohgew Kweon ◽  
Joanna Deck ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESC) among members of the familyEnterobacteriaceaeoccurs worldwide; however, little is known about ESC resistance inEscherichia colistrains from companion animals. Clinical isolates ofE. coliwere collected from veterinary diagnostic laboratories throughout the United States from 2008 to 2009.E. coliisolates (n= 54) with reduced susceptibility to ceftazidime or cefotaxime (MIC ≥ 16 μg/ml) and extended-spectrum-β-lactamase (ESBL) phenotypes were analyzed. PCR and sequencing were used to detect mutations in ESBL-encoding genes and the regulatory region of the chromosomal geneampC. Conjugation experiments and plasmid identification were conducted to examine the transferability of resistance to ESCs. All isolates carried theblaCTX-M-1-group β-lactamase genes in addition to one or more of the following β-lactamase genes:blaTEM,blaSHV-3,blaCMY-2,blaCTX-M-14-like, andblaOXA-1.DifferentblaTEMsequence variants were detected in some isolates (n= 40). Three isolates harbored ablaTEM-181gene with a novel mutation resulting in an Ala184Val substitution. Approximately 78% of the isolates had mutations in promoter/attenuator regions of the chromosomal geneampC, one of which was a novel insertion of adenine between bases −28 and −29. Plasmids ranging in size from 11 to 233 kbp were detected in the isolates, with a common plasmid size of 93 kbp identified in 60% of isolates. Plasmid-mediated transfer of β-lactamase genes increased the MICs (≥16-fold) of ESCs for transconjugants. Replicon typing among isolates revealed the predominance of IncI and IncFIA plasmids, followed by IncFIB plasmids. This study shows the emergence of conjugative plasmid-borne ESBLs amongE. colistrains from companion animals in the United States, which may compromise the effective therapeutic use of ESCs in veterinary medicine.


2018 ◽  
Vol 12 (08) ◽  
pp. 608-615 ◽  
Author(s):  
Belayneh Regasa Dadi ◽  
Tamrat Abebe ◽  
Lixin Zhang ◽  
Adane Mihret ◽  
Workeabeba Abebe ◽  
...  

Introduction: Urinary tract infection is a major cause of morbidity and mortality worldwide. Uropathogenic Escherichia coli bacteria are the most common cause of urinary tract infections. Drug resistant Escherichia coli is results in high levels of treatment failure and can be a significant threat to survival of patients. Methodology: Escherichia coli bacteria were isolated using culture and conventional biochemical tests. Antimicrobial susceptibility testing and plasmid profile were performed using the Kirby Bauer disc diffusion method and plasmid analysis. Data was processed with SPSS version 16.0 and Epi-info version 3.4.1 software. Results: The highest proportion of Escherichia coli isolates was resistant to (86.5%) to ampicillin, followed by ceftazidime (84%), ceftriaxone (80.5%), tetracycline (80%), trimethoprim-sulfamethoxazole (68.5%) and cefotaxime (66%). Escherichia coli isolates were most susceptible to meropenem (100%), imipenem (100%), amikacin (97.5%), nitrofurantoin (95%), ciprofloxacin (85.5%), norfloxacin (85%), chloramphenicol (83.5%), gentamycin (80%) and nalidixic acid (79%). Multidrug resistance (MDR) was observed in most (96.5%) E. coli isolates. Plasmid analysis revealed the presence of plasmid(s) in 165 (82.5%) of the E. coli isolates many of which had a plasmid size of 23 kb. Conclusions: The overall incidence of antibiotic resistance (including MDR) among E. coli in this study was high to commonly used antibiotics, but no drug resistance to meropenem and imipenem was observed. Periodic monitoring of the drug resistance pattern is essential for better management of urinary tract infections, which has direct impact on the outcome of the patient.


2022 ◽  
Vol XXVII (156) ◽  
pp. 32-43
Author(s):  
Mirella Tomaz Soares ◽  
Gerson Nakazato ◽  
Renata K. T. Kobayaski ◽  
Marcelo de Souza Zanutto

While diseases in humans seem to be an isolated concern, many are caused by zoonotic agents. The increasingly close contact between pets and their guardians must be considered, and investigations related to pathogens that are frequently found in humans and other animals must be carried out. Escherichia coli, in addition to being a commensal bacterium found in the intestinal tract of many animals, is one of the most frequent causes of several bacterial infections. Recent studies indicate that contact between humans and animals could contribute to the transmission between species of E. coli strains that produce extended-spectrum β-lactamases (ESBL) and AmpC-type lactamases, which are antimicrobial-resistant (multi-resistant). However, more studies are needed for these assumption to be confirmed. This review addresses the zoonotic potential of E. coli based on research related to the finding of pathogenic strains in animals and humans.


2002 ◽  
Vol 46 (2) ◽  
pp. 360-366 ◽  
Author(s):  
Mahmoud. A. Yassien ◽  
Hosam E. Ewis ◽  
Chung-Dar Lu ◽  
Ahmed T. Abdelal

ABSTRACT A genomic library from a strain of Salmonella enterica serovar Paratyphi B that exhibits multiple drug resistance (MDR) was constructed in Escherichia coli. Two of the recombinant plasmids, pNOR5 and pNOR5, conferred resistance only to fluoroquinolones in E. coli, whereas the third, pNCTR4, conferred the MDR phenotype. Sequence and subcloning analysis showed that it is the presence of RecA on the first two plasmids which confers resistance to fluoroquinolones in E. coli. A similar analysis established that the MDR phenotype conferred by pNCTR4 is due to a gene, rma (resistance to multiple antibiotics), which encodes a 13.5-kDa polypeptide. The derived sequence for Rma exhibits a high degree of similarity to those of a group of MarA-like activators that confer MDR in E. coli. A MalE-Rma fusion protein was purified to near homogeneity and was shown to interact with a DNA fragment carrying a MarA operator sequence. Furthermore, overexpression of rma in E. coli caused changes in the outer membrane protein profile that were similar to those reported for MarA. These results suggest that Rma might act as a transcriptional activator of the marA regulon.


2021 ◽  
Vol 9 (11) ◽  
pp. 2205
Author(s):  
Elizabeth A. McMillan ◽  
Ly-Huong T. Nguyen ◽  
Lari M. Hiott ◽  
Poonam Sharma ◽  
Charlene R. Jackson ◽  
...  

Salmonella enterica and Escherichia coli are important human pathogens that frequently contain plasmids, both large and small, carrying antibiotic resistance genes. Large conjugative plasmids are known to mobilize small Col plasmids, but less is known about the specificity of mobilization. In the current study, six S. enterica and four E. coli strains containing large plasmids were tested for their ability to mobilize three different kanamycin resistance Col plasmids (KanR plasmids). Large conjugative plasmids from five isolates, four S. enterica and one E. coli, were able to mobilize KanR plasmids of various types. Plasmids capable of mobilizing the KanR plasmids were either IncI1 or IncX, while IncI1 and IncX plasmids with no evidence of conjugation had disrupted transfer regions. Conjugative plasmids of similar types mobilized similar KanR plasmids, but not all conjugative plasmid types were capable of mobilizing all of the KanR plasmids. These data describe some of the complexities and specificities of individual small plasmid mobilization.


2013 ◽  
Vol 8 (3) ◽  
pp. 22-29 ◽  
Author(s):  
A Bora ◽  
GU Ahmed ◽  
NK Hazarika

Objective Urinary tract infections (UTIs) are the most prevalent infections worldwide, mostly caused by Escherichia coli. Emerging antibiotic resistance due to extended spectrum â-lactamase (ESBL) and AmpC β- lactamase production limit the use of β-lactam antibiotics against the infections caused by E. coli. We detected the production of ESBL and AmpC β-lactamase in urinary isolates of E. coli, recovered from a tertiary care referral hospital in Northeast India. Materials and Methods A total of 140 E. coli urinary isolates were recovered during October 2008 to January 2009. Antibiotic susceptibility testing and ESBL detection were carried out according to Clinical Laboratory and Standards Institute (CLSI) guidelines. Phenotypic detection of AmpC β-lactamase was carried out by AmpC disc method. Results Among the 140 urinary isolates, 112 isolates (80%) were multi-drug resistance (MDR). ESBL was detected in 67.14% (94/140) of E. coli isolates. AmpC β-lactamase was detected in 22.34% of ESBL producing E. coli isolates. Conclusions Routine testing for ESBL and AmpC β-lactamase in E. coli urinary isolates with conventional antibiogram would be useful for strict antibiotic policy implementation in hospitals, to estimate the impact of increased drug resistance and to take steps for reducing their resistance. Journal of College of Medical Sciences-Nepal, 2012, Vol-8, No-3, 22-29 DOI: http://dx.doi.org/10.3126/jcmsn.v8i3.8682


2021 ◽  
Vol 13 (18) ◽  
pp. 10174
Author(s):  
Katarzyna Wolny-Koładka ◽  
Marek Zdaniewicz

The aim of the study was to determine the drug resistance profile and to assess the presence of genes responsible for the production of extended-spectrum beta-lactamases in Escherichia coli isolated from energy-processed hop sediment with the addition of bulking agents. Antibiotic resistance was determined by the disk diffusion method and the PCR technique to detect genes determining the extended-spectrum beta-lactamases (ESBLs) mechanism. A total of 100 strains of E. coli were collected. The highest resistance was found to aztreonam, tetracycline, ampicillin, ticarcillin, and ceftazidime. The bacteria collected were most often resistant to even 10 antibiotics at the same time and 15 MDR strains were found. The ESBL mechanism was determined in 14 isolates. Among the studied genes responsible for beta-lactamase production, blaTEM was the most common (64%). The study revealed that the analysed material was colonised by multi-drug-resistant strains of E. coli, which pose a threat to public health. The obtained results encourage further studies to monitor the spread of drug resistance in E. coli.


2015 ◽  
Vol 59 (8) ◽  
pp. 5026-5028 ◽  
Author(s):  
Marcus Ho-yin Wong ◽  
Lizhang Liu ◽  
Meiying Yan ◽  
Edward Wai-chi Chan ◽  
Sheng Chen

ABSTRACTThe extended-spectrum-β-lactamase (ESBL) determinant CTX-M-55 is increasingly prevalent inEscherichia colibut remains extremely rare inSalmonella. This study reports the isolation of a plasmid harboring theblaCTX-M-55element in a clinicalSalmonella entericaserotype Typhimurium strain resistant to multiple antibiotics. This plasmid is genetically identical to several known IncI2-type elements harbored byE. colistrains recovered from animals. This finding indicates that IncI2 plasmids harboring theblaCTX-Mgenes may undergo cross-species migration among potential bacterial pathogens, withE. colias the major source of such elements.


2010 ◽  
Vol 54 (11) ◽  
pp. 4907-4909 ◽  
Author(s):  
Glenn Buvens ◽  
Pierre Bogaerts ◽  
Youri Glupczynski ◽  
Sabine Lauwers ◽  
Denis Piérard

ABSTRACT We have investigated the antimicrobial resistance of verocytotoxin-producing Escherichia coli (VTEC) strains isolated from humans, animals, food, and the environment in Belgium. Resistance was more frequent in non-O157 strains from humans than in O157 strains from humans or other sources, and among non-O157 VTEC strains, intimin-positive strains were more resistant than intimin-negative strains. We also report the first VTEC strain producing an IncI1 extended-spectrum β-lactamase encoded by plasmid-borne bla TEM-52; this β-lactamase was previously associated with Salmonella enterica and E. coli isolates from different origins.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Solveig Sølverød Mo ◽  
Marianne Sunde ◽  
Hanna Karin Ilag ◽  
Solveig Langsrud ◽  
Even Heir

ABSTRACT Escherichia coli strains resistant to extended-spectrum cephalosporins (ESC) are widely distributed in Norwegian broiler production, and the majority harbor transferable IncK or IncI1 plasmids carrying bla CMY-2 . Persistent occurrence in broiler farms may occur through the survival of ESC-resistant E. coli strains in the farm environment, or by transfer and maintenance of resistance plasmids within a population of environmental bacteria with high survival abilities. The aim of this study was to determine the transferability of two successful bla CMY-2 -carrying plasmids belonging to the incompatibility groups IncK and IncI1 into E. coli and Serratia species recipients. Initially, conjugative plasmid transfer from two E. coli donors to potential recipients was tested in an agar assay. Conjugation was further investigated for selected mating pairs in surface and planktonic assays at temperatures from 12°C to 37°C. Transfer of plasmids was observed on agar, in broth, and in biofilm at temperatures down to 25°C. The IncK plasmid was able to transfer into Serratia marcescens , and transconjugants were able to act as secondary plasmid donors to different E. coli and Serratia species recipients. All transconjugants displayed an AmpC phenotype corresponding to the acquisition of bla CMY-2 . In summary, the results indicate that the IncK plasmid may transfer between E. coli and Serratia spp. under conditions relevant for broiler production. IMPORTANCE Certain bla CMY-2 -carrying plasmids are successful and disseminated in European broiler production. Traditionally, plasmid transferability has been studied under conditions that are optimal for bacterial growth. Plasmid transfer has previously been reported between E. coli bacteria in biofilms at 37°C and in broth at temperatures ranging from 8 to 37°C. However, intergenus transfer of bla CMY-2 -carrying plasmids from E. coli to environmental bacteria in the food-processing chain has not been previously studied. We demonstrate that bla CMY-2 -carrying plasmids are capable of conjugative transfer between different poultry-associated bacterial genera under conditions relevant for broiler production. Transfer to Serratia spp. and to hosts with good biofilm-forming abilities and with the potential to act as secondary plasmid donors to new hosts might contribute to the persistence of these resistance plasmids. These results contribute to increased knowledge of factors affecting the persistence of ESC resistance in broiler production and can provide a basis for improvement of routines and preventive measures.


Sign in / Sign up

Export Citation Format

Share Document