scholarly journals Serum Glucan Levels Are Not Specific for Presence of Fungal Infections in Intensive Care Unit Patients

2003 ◽  
Vol 10 (5) ◽  
pp. 882-885 ◽  
Author(s):  
Justin Digby ◽  
John Kalbfleisch ◽  
Andy Glenn ◽  
Angie Larsen ◽  
William Browder ◽  
...  

ABSTRACT Fungal infections in the critically ill patient are difficult to diagnose and are associated with a high mortality rate. A major obstacle to managing fungal infection is the lack of a reliable clinical assay that will rapidly identify patients with fungal sepsis. Glucans are polymers of glucose that are found in the cell wall of fungi and certain bacteria. Glucans are also released from the fungal cell wall into the extracellular milieu. Several studies have reported that detection of fungal glucan in serum or plasma is useful in the diagnosis of mycoses. However, recent studies have questioned the clinical utility of this assay. In this study, we examined serum glucan levels in intensive care unit (ICU) patients and attempt to correlate serum glucan levels with the presence of fungal infection. Following attainment of informed consent, serum was harvested from 46 ICU patients with confirmed fungal infections, confirmed bacterial infections, or no evidence of infection. Sera from eight healthy volunteers served as control. Serum glucan was assayed with a glucan-specific Limulus assay. Serum glucan levels were increased (69.6 ± 17 pg/ml; P < 0.001) in ICU patients versus the normal (11.5 ± 1.3 pg/ml) and noninfected ICU (27.4 ± 17 pg/ml) controls. However, serum glucan levels were not different in patients with confirmed fungal infections versus those with confirmed bacterial infections. Thus, serum glucan levels did not show a correlation with the presence of fungal infections and do not appear to be specific for fungal infections. However, the assay may be useful as a negative predictor of infection.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kirstine K. Søgaard ◽  
Veronika Baettig ◽  
Michael Osthoff ◽  
Stephan Marsch ◽  
Karoline Leuzinger ◽  
...  

Abstract Objectives SARS-CoV-2 may cause acute lung injury, and secondary infections are thus relevant complications in patients with COVID-19 pneumonia. However, detailed information on community- and hospital-acquired infections among patients with COVID-19 pneumonia is scarce. Methods We identified 220 SARS-CoV-2-positive patients hospitalized at the University Hospital Basel, Switzerland (between 25 February and 31 May 2020). We excluded patients who declined the general consent (n = 12), patients without clinical evidence of pneumonia (n = 29), and patients hospitalized for < 24 h (n = 17). We evaluated the frequency of community- and hospital-acquired infections using respiratory and blood culture materials with antigen, culture-based, and molecular diagnostics. For ICU patients, all clinical and microbial findings were re-evaluated interdisciplinary (intensive care, infectious disease, and clinical microbiology), and agreement reached to classify patients with infections. Results In the final cohort of 162 hospitalized patients (median age 64.4 years (IQR, 50.4–74.2); 61.1% male), 41 (25.3%) patients were admitted to the intensive care unit, 34/41 (82.9%) required mechanical ventilation, and 17 (10.5%) of all hospitalized patients died. In total, 31 infections were diagnosed including five viral co-infections, 24 bacterial infections, and three fungal infections (ventilator-associated pneumonia, n = 5; tracheobronchitis, n = 13; pneumonia, n = 1; and bloodstream infection, n = 6). Median time to respiratory tract infection was 12.5 days (IQR, 8–18) and time to bloodstream infection 14 days (IQR, 6–30). Hospital-acquired bacterial and fungal infections were more frequent among ICU patients than other patients (36.6% vs. 1.7%). Antibiotic or antifungal treatment was administered in 71 (43.8%) patients. Conclusions Community-acquired viral and bacterial infections were rare among COVID-19 pneumonia patients. By contrast, hospital-acquired bacterial or fungal infections were frequently complicating the course among ICU patients.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Thomas Daix ◽  
Robin Jeannet ◽  
Ana Catalina Hernandez Padilla ◽  
Philippe Vignon ◽  
Jean Feuillard ◽  
...  

AbstractDuring COVID-19, immature granulocyte (IG) concentration is heterogeneous with higher concentrations than those found in bacterial sepsis. We investigated the relationship between IG levels at ICU admission and on days 7 (± 2) and 15 (± 2) and associated pulmonary bacterial infections in intensive care unit (ICU) patients hospitalized for an acute respiratory distress syndrome (ARDS) related to SARS-CoV-2. Patients with associated pulmonary bacterial infection had a peak of IGs. IG thresholds of 18% or 2 G/L allowed discriminating patients with ventilator associated pneumonia with 100% sensitivity and specificity. Our study supports that IGs could help identifying pulmonary bacterial infections in this population.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
R. J. M. Brüggemann ◽  
V. Middel-Baars ◽  
D. W. de Lange ◽  
A. Colbers ◽  
A. R. J. Girbes ◽  
...  

ABSTRACT Echinocandins, such as anidulafungin, are the first-line treatment for candidemia or invasive candidiasis in critically ill patients. There are conflicting data on the pharmacokinetic properties of anidulafungin in intensive care unit (ICU) patients. Adult ICU patients (from 3 hospitals) receiving anidulafungin for suspected or proven fungal infections were included in the present study. Patients were considered evaluable if a pharmacokinetic curve for day 3 could be completed. Twenty-three of 36 patients (7 female and 16 male) were evaluable. The median (range) age and body weight were 66 (28 to 88) years and 76 (50 to 115) kg, respectively. Pharmacokinetic sampling on day 3 (n = 23) resulted in a median anidulafungin area under the concentration-time curve from 0 to 24 h (AUC0–24) of 72.1 (interquartile range [IQR], 61.3 to 94.0) mg · h · liter−1, a median daily trough concentration (C 24) of 2.2 (IQR, 1.9 to 2.9) mg/liter, a median maximum concentration of drug in serum (C max) of 5.3 (IQR, 4.1 to 6.0) mg/liter, a median volume of distribution (V) of 46.0 (IQR, 32.2 to 60.2) liters, and a median clearance (CL) of 1.4 (IQR, 1.1 to 1.6) liters · h−1. Pharmacokinetic sampling on day 7 (n = 13) resulted in a median AUC0–24 of 82.7 (IQR, 73.0 to 129.5) mg · h · liter−1, a median minimum concentration of drug in serum (C min) of 2.8 (IQR, 2.2 to 4.2) mg/liter, a median C max of 5.9 (IQR, 4.6 to 8.0) mg/liter, a median V of 39.7 (IQR, 32.2 to 54.4) liters, and a median CL of 1.2 (IQR, 0.8 to 1.4) liters · h−1. The geometric mean ratio for the AUCday7/AUCday3 term was 1.13 (90% confidence interval [CI], 1.03 to 1.25). The exposure in the ICU patient population was in accordance with previous reports on anidulafungin pharmacokinetics in ICU patients but was lower than that for healthy volunteers or other patient populations. Larger cohorts of patients or pooled data analyses are necessary to retrieve relevant covariates. (This study has been registered at ClinicalTrials.gov under identifier NCT01438216.)


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Fengyuan Wang ◽  
Xiaoxuan Zhang ◽  
Guopu Chen ◽  
Yuanjin Zhao

Fungal infections are everlasting health challenges all over the world, bringing about great financial and medical burdens. Here, inspired by the natural competition law of beneficial bacteria against other microbes, we present novel living microneedles (LMNs) with functionalized bacteria encapsulation for efficient fungal infection treatment. The chosen beneficial bacterial components, Bacillus subtilis (B. subtilis), which are naturally found on the human skin and widely used for food processing, can get nutrients from the skin and escape from the immune system with the help of microneedles. Besides, the encapsulated B. subtilis can continuously produce and secrete various potential antifungal agents which can directly bind to fungal cell surface-associated proteins and destruct the cell membranes, thus avoiding drug resistance. After immobilization in the LMNs, the bacteria can stay within the LMNs without invasion and the encapsulated bacteria together with microneedles can be removed after application. Thus, the side effects, especially the risk for subsequent bacterial infections, are controlled to a minimum to ensure security. In addition, strong penetrability of the microneedles enhances penetration of antifungal agents, and their heights can be adjusted according to the infected depth to acquire better therapeutic effects. These features make the LMNs potentially valuable for clinical applications.


2015 ◽  
Vol 59 (8) ◽  
pp. 4403-4409 ◽  
Author(s):  
Vincent J. Lempers ◽  
Jeroen A. Schouten ◽  
Nicole G. Hunfeld ◽  
Angela Colbers ◽  
Henk J. van Leeuwen ◽  
...  

ABSTRACTMicafungin is considered an important agent for the treatment of invasive fungal infections in the intensive care unit (ICU). Little is known on the pharmacokinetics of micafungin. We investigated micafungin pharmacokinetics (PK) in ICU patients and set out to explore the parameters that influence micafungin plasma concentrations. ICU patients receiving 100 mg of intravenous micafungin once daily for suspected or proven fungal infection or as prophylaxis were eligible. Daily trough concentrations and PK curves (days 3 and 7) were collected. Pharmacokinetic analysis was performed using a standard two-stage approach. Twenty patients from the ICUs of four hospitals were evaluated. On day 3 (n= 20), the median (interquartile range [IQR]) area under the concentration-time curve from 0 to 24 h (AUC0–24) was 78.6 (65.3 to 94.1) mg · h/liter, the maximum concentration of drug in serum (Cmax) was 7.2 (5.4 to 9.2) mg/liter, the concentration 24 h after dosing (C24) was 1.55 (1.4 to 3.1) mg/liter, the volume of distribution (V) was 25.6 (21.3 to 29.1) liters, the clearance (CL) was 1.3 (1.1 to 1.5) liters/h, and the elimination half-life (t1/2) was 13.7 (12.2 to 15.5) h. The pharmacokinetic parameters on day 7 (n= 12) were not significantly different from those on day 3. Daily trough concentrations (day 3 to the end of therapy) showed moderate interindividual (57.9%) and limited intraindividual variability (12.9%). No covariates of the influence on micafungin exposure were identified. Micafungin was considered safe and well tolerated. We performed the first PK study with very intensive sampling on multiple occasions in ICU patients, which aided in resolving micafungin PK. Strikingly, micafungin exposure in our cohort of ICU patients was lower than that in healthy volunteers but not significantly different from that of other reference populations. The clinical consequence of these findings must be investigated in a pharmacokinetic-pharmacodynamic (PK-PD) study incorporating outcome in a larger cohort. (This study is registered at ClinicalTrials.gov under registration no. NCT01783379.)


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stephanie-Susanne Stecher ◽  
Sofia Anton ◽  
Alessia Fraccaroli ◽  
Jeremias Götschke ◽  
Hans Joachim Stemmler ◽  
...  

Abstract Background Point-of-care lung ultrasound (LU) is an established tool in the first assessment of patients with coronavirus disease (COVID-19). Purpose of this study was to evaluate the value of lung ultrasound in COVID-19 intensive care unit (ICU) patients in predicting clinical course and outcome. Methods We analyzed lung ultrasound score (LUS) of all COVID-19 patients admitted from March 2020 to December 2020 to the Internal Intensive Care Unit, Ludwig-Maximilians-University (LMU) of Munich. LU was performed according to a standardized protocol at ICU admission and in case of clinical deterioration with the need for intubation. A normal lung scores 0 points, the worst LUS has 24 points. Patients were stratified in a low (0–12 points) and a high (13–24 points) lung ultrasound score group. Results The study included 42 patients, 69% of them male. The most common comorbidities were hypertension (81%) and obesity (57%). The values of pH (7.42 ± 0.09 vs 7.35 ± 0.1; p = 0.047) and paO2 (107 [80–130] vs 80 [66–93] mmHg; p = 0.034) were significantly reduced in patients of the high LUS group. Furthermore, the duration of ventilation (12.5 [8.3–25] vs 36.5 [9.8–70] days; p = 0.029) was significantly prolonged in this group. Patchy subpleural thickening (n = 38; 90.5%) and subpleural consolidations (n = 23; 54.8%) were present in most patients. Pleural effusion was rare (n = 4; 9.5%). The median total LUS was 11.9 ± 3.9 points. In case of clinical deterioration with the need for intubation, LUS worsened significantly compared to baseline LU. Twelve patients died during the ICU stay (29%). There was no difference in survival in both LUS groups (75% vs 66.7%, p = 0.559). Conclusions LU can be a useful monitoring tool to predict clinical course but not outcome of COVID-19 ICU patients and can early recognize possible deteriorations.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Tessa L. Steel ◽  
Shewit P. Giovanni ◽  
Sarah C. Katsandres ◽  
Shawn M. Cohen ◽  
Kevin B. Stephenson ◽  
...  

Abstract Background The Clinical Institute Withdrawal Assessment for Alcohol-Revised (CIWA-Ar) is commonly used in hospitals to titrate medications for alcohol withdrawal syndrome (AWS), but may be difficult to apply to intensive care unit (ICU) patients who are too sick or otherwise unable to communicate. Objectives To evaluate the frequency of CIWA-Ar monitoring among ICU patients with AWS and variation in CIWA-Ar monitoring across patient demographic and clinical characteristics. Methods The study included all adults admitted to an ICU in 2017 after treatment for AWS in the Emergency Department of an academic hospital that standardly uses the CIWA-Ar to assess AWS severity and response to treatment. Demographic and clinical data, including Richmond Agitation-Sedation Scale (RASS) assessments (an alternative measure of agitation/sedation), were obtained via chart review. Associations between patient characteristics and CIWA-Ar monitoring were tested using logistic regression. Results After treatment for AWS, only 56% (n = 54/97) of ICU patients were evaluated using the CIWA-Ar; 94% of patients had a documented RASS assessment (n = 91/97). Patients were significantly less likely to receive CIWA-Ar monitoring if they were intubated or identified as Black. Conclusions CIWA-Ar monitoring was used inconsistently in ICU patients with AWS and completed less often in those who were intubated or identified as Black. These hypothesis-generating findings raise questions about the utility of the CIWA-Ar in ICU settings. Future studies should assess alternative measures for titrating AWS medications in the ICU that do not require verbal responses from patients and further explore the association of race with AWS monitoring.


2021 ◽  
Vol 9 (7) ◽  
pp. 1505
Author(s):  
Claire Roger ◽  
Benjamin Louart

Beta-lactams are the most commonly prescribed antimicrobials in intensive care unit (ICU) settings and remain one of the safest antimicrobials prescribed. However, the misdiagnosis of beta-lactam-related adverse events may alter ICU patient management and impact clinical outcomes. To describe the clinical manifestations, risk factors and beta-lactam-induced neurological and renal adverse effects in the ICU setting, we performed a comprehensive literature review via an electronic search on PubMed up to April 2021 to provide updated clinical data. Beta-lactam neurotoxicity occurs in 10–15% of ICU patients and may be responsible for a large panel of clinical manifestations, ranging from confusion, encephalopathy and hallucinations to myoclonus, convulsions and non-convulsive status epilepticus. Renal impairment, underlying brain abnormalities and advanced age have been recognized as the main risk factors for neurotoxicity. In ICU patients, trough concentrations above 22 mg/L for cefepime, 64 mg/L for meropenem, 125 mg/L for flucloxacillin and 360 mg/L for piperacillin (used without tazobactam) are associated with neurotoxicity in 50% of patients. Even though renal complications (especially severe complications, such as acute interstitial nephritis, renal damage associated with drug induced hemolytic anemia and renal obstruction by crystallization) remain rare, there is compelling evidence of increased nephrotoxicity using well-known nephrotoxic drugs such as vancomycin combined with beta-lactams. Treatment mainly relies on the discontinuation of the offending drug but in the near future, antimicrobial optimal dosing regimens should be defined, not only based on pharmacokinetics/pharmacodynamic (PK/PD) targets associated with clinical and microbiological efficacy, but also on PK/toxicodynamic targets. The use of dosing software may help to achieve these goals.


1998 ◽  
Vol 26 (2) ◽  
pp. 162-164 ◽  
Author(s):  
S. A. R. Webb ◽  
B. Roberts ◽  
F. X. Breheny ◽  
C. L. Golledge ◽  
P. D. Cameron ◽  
...  

Epidemics of bacteraemia and wound infection have been associated with the infusion of bacterially contaminated propofol administered during anaesthesia. We conducted an observational study to determine the incidence and clinical significance of administration of potentially contaminated propofol to patients in an ICU setting. One hundred patients received a total of 302 infusions of propofol. Eighteen episodes of possible contamination of propofol syringes were identified, but in all cases contamination was by a low-grade virulence pathogen. There were no episodes of clinical infection or colonization which could be attributed to the administration of contaminated propofol. During the routine use of propofol to provide sedation in ICU patients the risk of nosocomial infection secondary to contamination of propofol is extremely low.


Sign in / Sign up

Export Citation Format

Share Document