scholarly journals Recognition of ESAT-6 Sequences by Antibodies in Sera of Tuberculous Nonhuman Primates

2004 ◽  
Vol 11 (1) ◽  
pp. 222-226 ◽  
Author(s):  
G. V. Kanaujia ◽  
S. Motzel ◽  
M. A. Garcia ◽  
P. Andersen ◽  
M. L. Gennaro

ABSTRACT Previous work in our laboratory showed that the ESAT-6 protein of Mycobacterium tuberculosis and Mycobacterium bovis induces strong antibody responses in a large proportion (∼90%) of experimentally or naturally infected nonhuman primates. Here, the antibody response to ESAT-6 in tuberculous monkeys was characterized at the epitope level by measuring antibodies to overlapping, synthetic peptides spanning the ESAT-6 sequence. The antibody response against the COOH-terminal portion of the protein was the strongest in both experimentally and naturally infected animals. Moreover, these antibodies became detectable the earliest during experimental infection, suggesting an ordered expansion of ESAT-6-specific B-cell clones in the course of infection. The data support use of synthetic peptides in lieu of the full-length ESAT-6 protein in diagnostic antibody detection assays.

2013 ◽  
Vol 20 (6) ◽  
pp. 907-911 ◽  
Author(s):  
Konstantin P. Lyashchenko ◽  
Rena Greenwald ◽  
Javan Esfandiari ◽  
Daniel J. O'Brien ◽  
Stephen M. Schmitt ◽  
...  

ABSTRACTBovine tuberculosis (TB) in cervids remains a significant problem affecting farmed herds and wild populations. Traditional skin testing has serious limitations in certain species, whereas emerging serological assays showed promising diagnostic performance. The recently developed immunochromatographic dual-path platform (DPP) VetTB assay has two antigen bands, T1 (MPB83 protein) and T2 (CFP10/ESAT-6 fusion protein), for antibody detection. We evaluated the diagnostic accuracy of this test by using serum samples collected from groups of white-tailed deer experimentally inoculated withMycobacterium bovis,M. aviumsubsp.paratuberculosis, orM. bovisBCG Pasteur. In addition, we used serum samples from farmed white-tailed deer in herds with no history of TB, as well as from free-ranging white-tailed deer culled during field surveillance studies performed in Michigan known to have bovine TB in the wild deer population. The DPP VetTB assay detected antibody responses in 58.1% of experimentally infected animals within 8 to 16 weeks postinoculation and in 71.9% of naturally infected deer, resulting in an estimated test sensitivity of 65.1% and a specificity of 97.8%. The higher seroreactivity found in deer with naturally acquiredM. bovisinfection was associated with an increased frequency of antibody responses to the ESAT-6 and CFP10 proteins, resulting in a greater contribution of these antigens, in addition to MPB83, to the detection of seropositive animals, compared with experimentalM. bovisinfection. Deer experimentally inoculated with eitherM. aviumsubsp.paratuberculosisorM. bovisBCG Pasteur did not produce cross-reactive antibodies that could be detected by the DPP VetTB assay. The present findings demonstrate the relatively high diagnostic accuracy of the DPP VetTB test for white-tailed deer, especially in the detection of naturally infected animals.


1998 ◽  
Vol 66 (8) ◽  
pp. 3936-3940 ◽  
Author(s):  
Konstantin Lyashchenko ◽  
Roberto Colangeli ◽  
Michel Houde ◽  
Hamdan Al Jahdali ◽  
Dick Menzies ◽  
...  

ABSTRACT Antibody responses during tuberculosis were analyzed by an enzyme-linked immunosorbent assay with a panel of 10 protein antigens of Mycobacterium tuberculosis. It was shown that serum immunoglobulin G antibodies were produced against a variety of M. tuberculosis antigens and that the vast majority of sera from tuberculosis patients contained antibodies against one or more M. tuberculosis antigens. The number and the species of serologically reactive antigens varied greatly from individual to individual. In a given serum, the level of specific antibodies also varied with the antigen irrespective of the total number of antigens recognized by that particular serum. These findings indicate that person-to-person heterogeneity of antigen recognition, rather than recognition of particular antigens, is a key attribute of the antibody response in tuberculosis.


2011 ◽  
Vol 18 (12) ◽  
pp. 2154-2160 ◽  
Author(s):  
Fangui Min ◽  
Yu Zhang ◽  
Ren Huang ◽  
Wende Li ◽  
Yu'e Wu ◽  
...  

ABSTRACTOld tuberculin (OT) and purified protein derivative (PPD) are widely used for tuberculin skin testing (TST) in diagnosis of tuberculosis (TB) but often yield poor specificity and anergy in reaction. Therefore, it is necessary to develop new serological methods as a possible auxiliary diagnostic method for TB. In this study, we characterized the dynamic antibody responses of 10 purified recombinant antigens, PPD, and OT in rhesus monkeys experimentally infected withMycobacterium tuberculosisand analyzed the time to antibody detection, antibody levels, and their association with the infectious doses. The antibodies were detected as early as 4 weeks after infection in response to 5 antigens (CFP10, CFP10-ESAT-6, U1, MPT64, and Ag85b). Antibodies against most of the other antigens were detected between 4 and 12 weeks after infection. The levels of antibodies were dose dependant. We further evaluated the serodiagnostic potential of these antigens by using indirect enzyme-linked immunosorbent assay in 71 TST-positive and 90 TST-negative serum samples from monkeys. For all 12 antigens, the median optical density values of TST-positive monkeys were statistically significantly higher than those of TST-negative monkeys (P< 0.001). Among those antigens, Ag85b and CFP10 showed higher diagnostic potential than others. A combination of results from Ag85b, the 38-kDa antigen (Ag38kDa), and Ag14kDa reaches a sensitivity of 95.77%, indicating that these antigens may be ideal cocktails in TB diagnosis.


2009 ◽  
Vol 17 (2) ◽  
pp. 247-252 ◽  
Author(s):  
W. R. Waters ◽  
A. O. Whelan ◽  
K. P. Lyashchenko ◽  
R. Greenwald ◽  
M. V. Palmer ◽  
...  

ABSTRACT Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare the antigen-specific immune responses to various patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis infection) and colonization without pathology (M. tuberculosis infection) to no colonization or pathology (M. kansasii infection). Delayed-type hypersensitivity and gamma interferon responses were elicited by each mycobacterial inoculation; however, the responses by the M. bovis- and M. tuberculosis-inoculated animals exceeded those of the M. kansasii-inoculated animals. Specific antibody responses were detected in all M. tuberculosis- and M. bovis-inoculated cattle 3 weeks after inoculation. From 6 to 16 weeks after M. tuberculosis inoculation, the antibody responses waned, whereas the responses persisted with M. bovis infection. With M. kansasii inoculation, initial early antibody responses waned by 10 weeks after inoculation and then increased 2 weeks after the injection of purified protein derivative for the skin test at 18 weeks after challenge. These findings indicate that antibody responses are associated with the antigen burden rather than the pathology, cellular immune responses to tuberculin correlate with infection but not necessarily with the pathology or bacterial burden, and exposure to mycobacterial antigens may elicit an antibody response in a presensitized animal.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Jihane Hamdi ◽  
Zahra Bamouh ◽  
Mohammed Jazouli ◽  
Meryem Alhyane ◽  
Najet Safini ◽  
...  

Abstract Background Goatpox is a viral disease caused by infection with goatpox virus (GTPV) of the genus Capripoxvirus, Poxviridae family. Capripoxviruses cause serious disease to livestock and contribute to huge economic losses. Goatpox and sheeppox are endemic to Africa, particularly north of the Equator, the Middle East and many parts of Asia. GTPV and sheeppox virus are considered host-specific; however, both strains can cause clinical disease in either goats or sheep with more severe disease in the homologous species and mild or sub-clinical infection in the other. Goatpox has never been reported in Morocco, Algeria or Tunisia despite the huge population of goats living in proximity with sheep in those countries. To evaluate the susceptibility and pathogenicity of indigenous North African goats to GTPV infection, we experimentally inoculated eight locally bred goats with a virulent Vietnamese isolate of GTPV. Two uninfected goats were kept as controls. Clinical examination was carried out daily and blood was sampled for virology and for investigating the antibody response. After necropsy, tissues were collected and assessed for viral DNA using real-time PCR. Results Following the experimental infection, all inoculated goats displayed clinical signs characteristic of goatpox including varying degrees of hyperthermia, loss of appetite, inactivity and cutaneous lesions. The infection severely affected three of the infected animals while moderate to mild disease was noticed in the remaining goats. A high antibody response was developed. High viral DNA loads were detected in skin crusts and nodules, and subcutaneous tissue at the injection site with cycle threshold (Ct) values ranging from 14.6 to 22.9, while lower viral loads were found in liver and lung (Ct = 35.7 and 35.1). The results confirmed subcutaneous tropism of the virus. Conclusion Clinical signs of goatpox were reproduced in indigenous North African goats and confirmed a high susceptibility of the North African goat breed to GTPV infection. A clinical scoring system is proposed that can be applied in GTPV vaccine efficacy studies.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 470
Author(s):  
Mark Westman ◽  
Dennis Yang ◽  
Jennifer Green ◽  
Jacqueline Norris ◽  
Richard Malik ◽  
...  

Although the antibody response induced by primary vaccination with Fel-O-Vax® FIV (three doses, 2–4 weeks apart) is well described, the antibody response induced by annual vaccination with Fel-O-Vax® FIV (single dose every 12 months after primary vaccination) and how it compares to the primary antibody response has not been studied. Residual blood samples from a primary FIV vaccination study (n = 11), and blood samples from cats given an annual FIV vaccination (n = 10), were utilized. Samples from all 21 cats were tested with a commercially available PCR assay (FIV RealPCRTM), an anti-p24 microsphere immunoassay (MIA), an anti-FIV transmembrane (TM; gp40) peptide ELISA, and a range of commercially available point-of-care (PoC) FIV antibody kits. PCR testing confirmed all 21 cats to be FIV-uninfected for the duration of this study. Results from MIA and ELISA testing showed that both vaccination regimes induced significant antibody responses against p24 and gp40, and both anti-p24 and anti-gp40 antibodies were variably present 12 months after FIV vaccination. The magnitude of the antibody response against both p24 and gp40 was significantly higher in the primary FIV vaccination group than in the annual FIV vaccination group. The differences in prime versus recall post-vaccinal antibody levels correlated with FIV PoC kit performance. Two FIV PoC kits that detect antibodies against gp40, namely Witness® and Anigen Rapid®, showed 100% specificity in cats recently administered an annual FIV vaccination, demonstrating that they can be used to accurately distinguish vaccination and infection in annually vaccinated cats. A third FIV PoC kit, SNAP® Combo, had 0% specificity in annually FIV-vaccinated cats, and should not be used in any cat with a possible history of FIV vaccination. This study outlines the antibody response to inactivated Fel-O-Vax® FIV whole-virus vaccine, and demonstrates how best to diagnose FIV infection in jurisdictions where FIV vaccination is practiced.


Sign in / Sign up

Export Citation Format

Share Document