scholarly journals Respiratory Syncytial Virus Vaccines

1998 ◽  
Vol 11 (3) ◽  
pp. 430-439 ◽  
Author(s):  
Robert A. Dudas ◽  
Ruth A. Karron

SUMMARY Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically distinct RSV groups, A and B; and the history of disease enhancement following administration of a formalin-inactivated vaccine. It is likely that more than one type of vaccine will be needed to prevent RSV LRI in the various populations at risk. Although vector delivery systems, synthetic peptide, and immune-stimulating complex vaccines have been evaluated in animal models, only the purified F protein (PFP) subunit vaccines and live attenuated vaccines have been evaluated in recent clinical trials. PFP-2 appears to be a promising vaccine for the elderly and for RSV-seropositive children with underlying pulmonary disease, whereas live cold-passaged (cp), temperature-sensitive (ts) RSV vaccines (denoted cpts vaccines) would most probably be useful in young infants. The availability of cDNA technology should allow further refinement of existing live attenuated cpts candidate vaccines to produce engineered vaccines that are satisfactorily attenuated, immunogenic, and phenotypically stable.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 610 ◽  
Author(s):  
Sofia Jares Baglivo ◽  
Fernando P Polack

Severe respiratory syncytial virus (RSV) lower respiratory tract illness (LRTI) in infants has proven challenging to prevent. In the last 50 years, conceptually different approaches failed to evolve into viable preventive alternatives for routine use. Inactivated RSV vaccine (that is, formalin-inactivated RSV) elicited severe LRTI in RSV-infected toddlers pre-immunized as infants; early purified F protein approaches in pregnant women failed to elicit sufficient immunity more than a decade ago; a second-generation monoclonal antibody (mAb) of high potency against the virus (that is, motavizumab) caused severe adverse reactions in the skin, and owing to lack of efficacy against RSV subgroup B, an extended half-life mAb targeting site V in the RSV fusion protein (that is, REG2222) did not meet its primary endpoint. In the meantime, two protein F vaccines failed to prevent medically attended LRTI in the elderly. However, palivizumab and the recent results of the Novavax maternal immunization trial with ResVax demonstrate that severe RSV LRTI can be prevented by mAb and by maternal immunization (at least to a certain extent). In fact, disease prevention may also decrease the rates of recurrent wheezing and all-cause pneumonia for at least 180 days. In this review, we discuss the history of RSV vaccine development, previous and current vaccine strategies undergoing evaluation, and recent information about disease burden and its implications for the effects of successful preventive strategies.


Thorax ◽  
2019 ◽  
Vol 74 (10) ◽  
pp. 986-993 ◽  
Author(s):  
James Andrew Coultas ◽  
Rosalind Smyth ◽  
Peter J Openshaw

Respiratory syncytial virus (RSV) is the most common single cause of respiratory hospitalisation of infants and is the second largest cause of lower respiratory infection mortality worldwide. In adults, RSV is an under-recognised cause of deterioration in health, particularly in frail elderly persons. Infection rates typically rise in late autumn and early winter causing bronchiolitis in infants, common colds in adults and insidious respiratory illness in the elderly. Virus detection methods optimised for use in children have low detection rate in adults, highlighting the need for better diagnostic tests. There are many vaccines under development, mostly based on the surface glycoprotein F which exists in two conformations (prefusion and postfusion). Much of the neutralising antibody appears to be to the prefusion form. Vaccines being developed include live attenuated, subunit, particle based and live vectored agents. Different vaccine strategies may be appropriate for different target populations: at-risk infants, school-age children, adult caregivers and the elderly. Antiviral drugs are in clinical trial and may find a place in disease management. RSV disease is one of the major remaining common tractable challenges in infectious diseases and the era of vaccines and antivirals for RSV is on the near horizon.


2019 ◽  
Vol 222 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Ruth A Karron ◽  
Cindy Luongo ◽  
Jocelyn San Mateo ◽  
Kimberli Wanionek ◽  
Peter L Collins ◽  
...  

Abstract Background Respiratory syncytial virus (RSV) is the leading global cause of severe pediatric acute respiratory tract illness, and a vaccine is needed. RSV/ΔNS2/Δ1313/I1314L contains 2 attenuating elements: (1) deletion of the interferon antagonist NS2 gene and (2) deletion of codon 1313 of the RSV polymerase gene and the stabilizing missense mutation I1314L. This live vaccine candidate was temperature-sensitive, genetically stable, replication restricted, and immunogenic in nonhuman primates. Methods A single intranasal dose of RSV/ΔNS2/Δ1313/I1314L was evaluated in a double-blind, placebo-controlled trial (vaccine-placebo ratio, 2:1) at 106 plaque-forming units (PFU) in 15 RSV-seropositive children and at 105 and 106 PFU in 21 and 30 RSV-seronegative children, respectively. Results In RSV-seronegative children, the 105 PFU dose was overattenuated, but the 106 PFU dose was well tolerated, infectious (RSV/ΔNS2/Δ1313/I1314L replication detected in 90% of vaccinees), and immunogenic (geometric mean serum RSV plaque-reduction neutralizing antibody titer, 1:64). After the RSV season, 9 of 20 vaccinees had increases in the RSV titer that were significantly greater than those in 8 of 10 placebo recipients (1:955 vs 1:69, respectively), indicating that the vaccine primed for anamnestic responses after natural RSV exposure. Conclusion Rational design yielded a genetically stable candidate RSV vaccine that is attenuated yet immunogenic in RSV-seronegative children, warranting further evaluation. Clinical Trials Registration NCT01893554.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1214
Author(s):  
Larry J. Anderson ◽  
Samadhan J. Jadhao ◽  
Clinton R. Paden ◽  
Suxiang Tong

Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 367
Author(s):  
Ralph A. Tripp ◽  
Paul S. McNamara

Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract illness in infants and affects the elderly and the immune-compromised [...]


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Author(s):  
Ian Mitchell ◽  
Abby Li ◽  
Candice L. Bjornson ◽  
Krista L. Lanctot ◽  
Bosco A. Paes ◽  
...  

Objective This study aimed to evaluate palivizumab (PVZ) use, trends in indications, and outcomes of respiratory illness hospitalizations (RIH) and respiratory syncytial virus hospitalizations (RSVH). Study Design It involves a large, Canadian prospective (2005–2017) observational multicenter study of children at high risk for RSV infection. Results A total of 25,003 infants (56.3% male) were enrolled at 32 sites; 109,579 PVZ injections were administered. Indications included: prematurity (63.3%); “miscellaneous” (17.8%); hemodynamically significant congenital heart disease (10.5%); bronchopulmonary dysplasia/chronic lung disease (8.4%). The “miscellaneous” group increased over time (4.4% in 2005–2006 to 22.5% in 2016–2017) and included: trisomy 21, airway anomalies, pulmonary disorders, cystic fibrosis, neurological impairments, immunocompromised, cardiac aged >2 years, multiple conditions, and a residual “unclassified” group. Adherence measured by expected versus actual doses plus correct interdose interval was 64.7%. A total of 2,054 RIH occurred (6.9%); 198 (9.6%) required intubation. Three hundred thirty-seven hospitalized children were RSV-positive (overall RSVH 1.6%). Risk factors for RSVH included having siblings, attending daycare, family history of atopy, smoking exposure, and crowded household. Infants with 5 risk factors were 9.0 times (95% CI or confidence interval 4.4–18.2; p < 0.0005) more likely to have RSVH than infants without risk factors. Three adverse events occurred; none were fatal. Conclusion Results are relevant to both clinicians and decision-makers. We confirmed the safety of PVZ. Use of PVZ increased steadily for children with miscellaneous conditions and medical complexity. Medical and social factors pose a risk for severe RIH and RSVH with accompanying burden of illness. A vaccine that protects against RSV is urgently required. Key Points


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Laura M. Stephens ◽  
Steven M. Varga

Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abate Yeshidinber Weldetsadik ◽  
Frank Riedel

Abstract Background Respiratory Syncytial Virus (RSV) is the commonest cause of acute lower respiratory infections (ALRI) in infants. However, the burden of RSV is unknown in Ethiopia. We aimed to determine the prevalence, seasonality and predictors of RSV infection in young infants with ALRI for the first time in Ethiopia. Methods We performed RSV immuno-chromatographic assay from nasopharyngeal swabs of infants, 29 days to 6 months of age. We included the first 10 eligible infants in each month from June 2018 to May 2019 admitted in a tertiary pediatric center. Clinical, laboratory and imaging data were also collected, and chi-square test and regression were used to assess associated factors with RSV infection. Results Among a total of 117 study children, 65% were male and mean age was 3 months. Bronchiolitis was the commonest diagnosis (49%). RSV was isolated from 26 subjects (22.2%) of all ALRI, 37% of bronchiolitis and 11% of pneumonia patients. Although RSV infection occurred year round, highest rate extended from June to November. No clinical or laboratory parameter predicted RSV infection and only rainy season (Adjusted Odds Ratio (AOR) 10.46 [95%. C.I. 1.95, 56.18]) was independent predictor of RSV infection. Conclusions RSV was isolated in a fifth of young infants with severe ALRI, mostly in the rainy season. Diagnosis of RSV infection in our setting require specific tests as no clinical parameter predicted RSV infection. Since RSV caused less than a quarter of ALRI in our setting, the other causes should be looked for in future studies.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2607
Author(s):  
Yuzhen Gao ◽  
Jingjing Cao ◽  
Pan Xing ◽  
Ralf Altmeyer ◽  
Youming Zhang

Respiratory syncytial virus (RSV) is a major pathogen that causes severe lower respiratory tract infection in infants, the elderly and the immunocompromised worldwide. At present no approved specific drugs or vaccines are available to treat this pathogen. Recently, several promising candidates targeting RSV entry and multiplication steps are under investigation. However, it is possible to lead to drug resistance under the long-term treatment. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we tested in vitro two-drug combinations of fusion inhibitors (GS5806, Ziresovir and BMS433771) and RNA-dependent RNA polymerase complex (RdRp) inhibitors (ALS8176, RSV604, and Cyclopamine). The statistical program MacSynergy II was employed to determine synergism, additivity or antagonism between drugs. From the result, we found that combinations of ALS8176 and Ziresovir or GS5806 exhibit additive effects against RSV in vitro, with interaction volume of 50 µM2% and 31 µM2% at 95% confidence interval, respectively. On the other hand, all combinations between fusion inhibitors showed antagonistic effects against RSV in vitro, with volume of antagonism ranging from −50 µM2 % to −176 µM2 % at 95% confidence interval. Over all, our results suggest the potentially therapeutic combinations in combating RSV in vitro could be considered for further animal and clinical evaluations.


Sign in / Sign up

Export Citation Format

Share Document